Down the rabbit hole...

Some claim that Bell made a serious mistake and is wrong in his calculations and his conclusions. I have made such arguments and am in process of updating them in "Physics-based Disproof..." and I make another argument in my current essay. Joy Christian also claims that Bell is wrong, for reasons explained in his book and on his blogs. Just today I read a 2011 paper by Hess, De Raedt, and Michielsen on "Hidden Assumptions in the Derivation of the Theorem of Bell". And Ulf Klein's current FQXi essay analyzes the meaning of Bell's conclusions about completeness, and argues that quantum mechanics does not apply to individual events. There are many more such arguments against Bell.

On the other hand, many physicists assume that Bell has banished local reality. That is, reality is non-local and properties don't exist or become real until measurement. Of this 'weirdness' they brag 'we can't possibly understand it' so just "Shut up and calculate!"

To see just how cloud-cuckoo this can become, I call your attention to an Aug 3, 2012 PhysicsWorld article, "Can the future affect the past?" which discusses a new paper by Aharonov et al. based upon weak measurements (as described in my essay). Briefly, "Bell's theorem forbids spin values to exist prior to the final choice of the [EPR] spin-orientation to be measured," and yet the weak measurements [prior to choice] agree with the strong measurements [that 'collapse' the wave function and make the properties "real"].

Get ready. Here it comes:

Aharonov claims that "the only *reasonable* resolution seems to be that ... the weak measurement's outcomes anticipate the experimenter's future choice, even before the experimenters themselves know what their choice is going to be."

Yep, that's "reasonable" in a Bell world.

This is where blind faith in Bell's theorem leads. If this does not constitute de facto proof that Bell mis-analyzed the problem and came to a faulty conclusion, then such proof [as the actual experiments being discussed here] will probably never exist, and physicists will dive deeper and deeper down the rabbit hole.

Edwin Eugene Klingman

    Hi Edwin,

    Very nice summary! I agree with every word of it, and more importantly, with the spirit of it.

    However, what you have not yet appreciated (and this I know from our previous discussions and from your "physics based disproof") is that Bell did not make a silly, easy to overcome mistake. He made a profound discovery and a very instructive mistake. You have not yet understood either his discovery or his mistake. Bell discovered that quantum correlations are stronger, and hence more disciplined than the correlations we usually encounter in the classical world. This is a non-trivial discovery. Consequently, meeting Bell's challenge requires a non-trivial understanding of quantum correlations. It requires understanding what they are all about and where do they originate from.

    Your "physics based disproof" does not come anywhere close to disproving Bell's theorem or even recognizing his error---because, as I have said before, you have no understanding of what Bell was concerned about. With all your good intensions, you must first understand Bell's theorem correctly before you can challenge it. The community of physicists who believe in Bell's theorem may be somewhat dogmatic, closed-minded, and naive, but they are most certainly not stupid. They believe in what they believe in for very good scientific reasons. Until you understand these reasons you have not understood Bell's theorem. You cannot disprove that which you haven't understood. I say this with the best of intentions because I know your heart is in the right place. I hope you will use my words for your own benefit.

    Best,

    Joy

    Hi Edwin,

    The scientific community has been asserting it's unquestionable authority that human beings have no soul, there is no hereafter, and that psychic phenomena doesn't exist on the basis that everything is explainable with science. You said,

    "Aharonov claims that "the only *reasonable* resolution seems to be that ... the weak measurement's outcomes anticipate the experimenter's future choice, even before the experimenters themselves know what their choice is going to be."

    Here you are trying to bring down an accepted theorem, Bell's theorem, on the grounds that weak measurements somehow know what the experimenter will chose. You make it look as if Bell's theorem has to be wrong, because if it's right, it means something spooky and paranormal is occurring.

    I am not criticizing your point of view in the least. I am merely injecting my opinion that when science tells us there is no paranormal, no psychic phenomena, no soul, no ghosts, nothing unknown, that science can explain everything, that science is really feeding us a load of crap. Suddenly the choice of the experimenter is now part of some unknown variables. Clearly, quantum mechanics destroys all classical belief that we are soulless biological machines. I'll take back my faith, thank you.

    Hi Edwin,

    A lot of physicists have undertaken to explain why action at a distance isn't "spooky." Aharonov's and everyone else's explanation necessarily relies on a probabilistic interpretation of reality. (Richard Gill is also among those who do not think that nonlocality is necessary to quantum mechanics -- that probability alone determines measurement outcomes.)

    All of these explanations end up assuming what they intend to prove, for at least one very elementary mathematical reason (a), and one very elementary physical reason(b): a) the measure space is made of a continuous range of variables, while the measurement result is discrete (this is what makes Lamport's discovery profound); b) given that relativity is true, there can be no probabilistic distinction between past and future, which is equivalent to assuming a privileged coordinate frame.

    Like Joy Christian, Aharonov et al propose nonlocality as only apparently true: " ... what appears to be nonlocal in space turns out to be perfectly local in spacetime." So far, so good -- except that it is impossible in principle to perform a probability measure on the spacetime continuum. The difference between purportedly entangled discrete particles and demonstrably correlated continuous wave functions is a strict constraint; spacetime can't be discretized without assuming either nonlocality or a privileged frame of reference. If considered to be a complete theory, quantum mechanics *cannot* discard the assumption of nonlocality, or else the theory is incoherent.

    Joy does away with the conundrum, by allowing a natural, constructive, and globally continuous topological condition (all proofs of nonlocality are nonconstructive, and all topology is global) to be realized in the local discrete measurement outcomes -- without invoking probability or time, which in turn shows that quantum correlations do not result from particle entanglement, and both nonlocality and entanglement are illusions.

    In other words, while Bell's theorem explicitly demonstrates that no classical theory can be derived from the principles of quantum mechanics -- it does not forbid quantum mechanical results from being derived on classical principles. This latter is what Joy has demonstrated, and which satisfies the completeness criterion for a physical theory; i.e., every element of the mathematical theory corresponds to every element of the physical measure.

    Tom

    Dear Edwin

    Sorry for the delay in commenting on your essay; I have been giving your essay some thought.

    As you saw in my essay, I agree with you that the wave function captures a real physical wave and not just some sort of mathematical probability wave. In the example of wave interference for electrons, it is possible to take such a purely mathematical view of the situation far from the slits causing the interference pattern. The alternative is to take the view of a physical wave, where the focus is then on the slits. As these must be on the scale of the wavelength of the particle, physical intuition leads to focusing on what is going on at the scale of the wavelength of the particle - as you do in your essay. I also make the same choice of physical intuition over the mathematics as you do, and consequently agree with you on the assumptions that you challenge. The problem is that the maths doesn't agree with our choice. So either we abandon our physical intuition and go with the abstract maths, but as Roger Schlafly discussed in his essay, this could be a major source of the problem physics has had. I point with which I agree.

    Models with causal linkage between the particle and wave property generally have problems with Bell-type analysis, or re-analysis. Quantum Theory has a very peculiar form of non-locality, with what can be called non-locality of identity which is confirmed by wave interference and quantum entanglement experiments. However, this is strangely not accompanied by non-locality of causation such that it could be practically used to send a signal faster than light. Unfortunately because your model has causal linkage between the wave and particle properties, when you obtain the non-locality of identity required for comparison with QT you also acquire non-locality of causation. So Joy Christian is right and the model as given in the essay does fall victim to the non-locality issue, as encountered via Bell-type analysis.

    However, our physical intuition is based upon the assumption that the physical concepts we use are absolutely defined, whereas they are actually defined relative to a background, as is explicit in GR. This generally doesn't make any difference as the normal space background on which our physical intuition is based generally doesn't change dramatically enough. There is however one scenario in GR where the change in the background metric of space-time is dramatic enough to upset our expectations, and that is the ergo-region of a rotating black hole where the time component of the metric reverses sign. This change would affect what we define as being local and non-local. Consider two events with time separation dt and space separation dx - such as a causally linked particle and wave property - which would have a time-like separation ds2 = -cdt2 dx2 < 0 in normal space. Now change the background metric by simply reversing the sign of the time component - as occurs in the ergo-region - and the separation becomes space-like ds2 = cdt2 dx2 > 0. The actual time and distance separations haven't changed, but the change in the background metric has changed local causation into apparently non-local causation. So in a compound model of particle and wave with what our physics intuition would call local causal linkage in normal space, the inclusion of this sign reversal effect on the scale of the wavelength of the particle would give a non-local identity to the compound object. But because the metric is as per normal beyond the wavelength of the compound object, it wouldn't have non-locality of causation and so could be expected to avoid falling victim to Bell-type analysis.

    My essay discusses this effect in the context of deriving quantum field theory via a change in mathematical representation because the wave expansion about a particle-like black hole on the Planck scale can be proven to be mathematically incomplete in terms of countable particle (black hole) numbers. However, it does suggest that an approximate causal model of a particle-wave compound object could be possible if it included this effect of sign reversal in the time component of the metric.

    Hope this is helpful.

    Michael

      Hi Joy,

      I'm glad that you agree with the spirit of remarks in 'the rabbit hole'. As I noted, you disagree with Bell and have presented your arguments on arXiv, blogs and in a book.

      However... even if my heart is in the right place, you believe I don't understand either Bell or your disproof of Bell. Because I use your Geometric Algebra framework in my essay, I felt that it was your right to comment on this on my blog thread. But I see little need to argue with you about whether I understand what Bell was about. You have argued in a dozen papers, thousands of comments, and your book, about quantum correlations as you understand them. I do not wish to consume my blog with those same arguments. They are available to everyone elsewhere.

      I did not mean to imply that the community of physicists is stupid, only to show what belief in Bell's theorem leads to. Before Bell, if a measurement showed local real properties that were consistent with a later measurement and with concepts of conservation of momentum and energy, physicists would simply say, of course! Post-Bell, brilliant physicists say the early measurement displays evidence of a choice that the experimenter hasn't even made yet.

      And we all appear to agree that Bell was wrong. You have a strong interest in saying exactly why he was wrong in a way that supports your program. For those not dedicated to your program it is most important to understand that he *was* wrong. As I mentioned above, there are numerous proposals that suggest *why* he was wrong, and yours is an important one.

      Edwin Eugene Klingman

      Hi Tom,

      As you know, I disagree with your view of the world as based on Lamport, and often fail to agree with you. I don't see that as my problem or as your problem, but it clearly has kept us from being in full agreement.

      In the above comment you claim that while classical theory cannot be derived from principles of QM, nothing prevents QM results being derived from classical. That is interesting as that is basically what I have been writing about since my very first FQXi essay, and you have, for the most part, argued with me. So I'm glad that you now point it out -- in a fashion that fits with your ideas.

      Best,

      Edwin Eugene Klingman

      Dear Michael James Goodband,

      Thank you very much for giving my essay thought and for your extensive comment. I have not yet re-read your essay and I believe your comment will be very helpful to me in understanding it better next time.

      As noted, I have more faith in physical intuition than in mathematical abstraction. Not mathematical logic -- that's fine, but the application of mathematical abstractions to the 'real' world of Nature. And if you have not already read them, I recommend Dan Bruiger's and Ulf Klein's essays as thought-provoking.

      The century-long history of quantum theory has covered wave functions, with and without particles, and non-locality, understood (or not) in various ways, and has sometimes ventured as far as consciousness and many worlds, while also attempting to cover particle physics and nuclear physics, as well as cosmology. My earlier essays have touched on consciousness and particle physics and cosmological aspects of my model, while my current essay specializes in one aspect of QM, the wave function, without other distractions. Yet although I have not published in detail all of the particle physics aspects of the model, I successfully derive all known particles (except the Higgs) and at least qualitatively answer dozens of questions that current physics appears unable to answer. It is this, going far beyond the wave function, that keeps me on this path, despite Joy's insistence that I have not suitably understood or accounted for Bell's (mistaken) arguments. I believe there is more at stake than Bell.

      So I will cogitate on your paragraph about models with causal linkage and I will also try to understand your use of time-like and space-like separation to change local causation into apparently non-local causation. It is exciting to see a new idea applied to a century old problem.

      Thanks again for your insightful comment.

      Edwin Eugene Klingman

      Mr. Klingman, this is something particular interest to me of how energy and time related to 1 another. I am rather unfamiliar with this concept. Where might a good resource be that I could look into this more? Thanks.

      Dwaynefries1@gmail.com

      Hi Dwayne,

      When things in physics are related to each other in a special way, like position and momentum, or like time and energy, they are called 'conjugate variables'. So I suggest that you start by googling "time and energy conjugate" (without the quote marks). Then probably start with the Wikipedia link and go from there. The arXiv links are usually fairly complicated but you should be able to find just the level you're looking for by scanning ten or twenty links.

      That's a very good place to start in physics.

      Good luck,

      Edwin Eugene Klingman

      Hello Edwin,

      I've never disagreed with your emphasis on continuous functions. I just never have seen a way for your program to satisfy the completeness criterion, which of course is my chief concern.

      Lamport's contribution is a strict local barrier to completeness; overcoming it requires a global solution.

      Tom

      Dear Edwin

      Thanks for your recommendations of essays to read.

      It would seem that when presented with the choice between mathematics and physics, we are not alone in choosing the physics over mathematics. I made mine when I did a course on super-symmetry during my PhD and decided it was just mathematical fantasy. A conclusion that the LHC seems to be confirming - probably conclusively by the end of 2012. Unfortunately the mathematics which directly disagrees with our physical intuition is correct, and so a number of us are concluding that there just MUST be something screwy with our mathematical representation.

      Physical intuition leads to the conclusion that the particle aspect of wave-particle duality is more fundamental, and that the wave aspect is causally created by the particle in some way - my essay also contains this. However, experiments reveal that the wave aspect seems to causally determine where the particle aspect is found. This gives a form of causal closure where the fundamental particle property determines the wave, particle -> wave, but the wave aspect then determines the particle, wave -> particle. The difficulty is that the causation particle -> wave will take some time dt>0 and the causation of wave -> particle will take some time dt>0, but experiments reveal that the closed cycle takes no time at all dt=0. My point about a change in the background metric is the only way I can see of squaring this without falling foul of non-locality problems with experiments.

      With the particle being fundamental the wave aspect can be said to be created from the bottom-up, but the problematic element is always the reverse from wave to particle, which looks like a problem with top-down causation - the subject of the George Ellis essay. And in fact, my essay somewhat hides that the real issue is an identifiable problem with the mathematical representation of causally closed states under certain conditions. I made this much clearer in a more general philosophy of science paper which I have just put on http://vixra.org/abs/1208.0010

      Best,

      Michael

      Hi Erwin, first of all, a very understandable essay about the essence of physics today. Physicists based in the Uk think that they have proof that ithere is more then meets the eye. (see New Scientist 28 july 2012, : Ghost in the atom, page 28-31, by Marcus Chown) They concoted a thought experiment which involved bringing two independent atoms together and making a particular measurement on them. Their results showed that the wave function cannot be a mere abstract mathematical device, IT MUST BE REAL (?). Their conclusion : Quantum Theory makes no sense if the wave function is merely a probability distribution instead, the wave function HAS TO BE A REAL THING associated with a single quantum system, informing it how to behave. I wonder what your opinion is here, I am doubting this view, because i think that a quantum system has true properties, even before any measurement (observation) has been made on it., further moer in my new essay "THE CONSCIOUNESS CONNECTION" which has still to be accepted by FQXi, I introduce the so called "subjective simultaneity" which is in fact a universal web of interactions (decoherence) in which almost every system influences every other system. The second doubt I have is that the wave function ofv two particles (in their view) exist in an abstract six-dimensional space and for three particles nine-dimensional and so on, this is not logical I think. Furthermore once you accept a wave as a reality (stuff) in an atom where is the origin of this wave ? It means that the wave must be created sometime as a result of particles merging but then ?

      thanks in advance for your appreciated answer. Wilhelmus

        Dear Edwin Eugene,

        I think, demonstrating the relativity of simultaneity in accordance with the wave functions of two identical particles, may evolve consistency of wave mechanics with string dynamics within the framework of quantum mechanics.

        With best wishes

        Jayakar

        Dear Wilhelmus de Wilde,

        Great comments and great questions! And thanks for the link to "Ghost in the atom". I'll start with that. The animation is actually wrong in my view. They say that if the wave function is 'real' then you get a 'taco-dog-burger' in the box until you look at it. That is the 'collapse of the wave function' interpretation that I explain to be incorrect. It surprises me that physicists can insist that the wave function is real and still believe it is a mathematical superposition.

        But I do agree with you (and them) that "the wave function cannot be a mere abstract mathematical device, IT MUST BE REAL" and that "Quantum Theory makes no sense if the wave function is a mere probability distribution, instead, the wave function HAS TO BE A REAL THING."

        Recent measurements of the wave function (discussed in my essay) agree with a recent proof by Pusey, Barrett, and Rudolph ('PBR') than an "information only" wave function cannot predict quantum results. This is consistent with the work you mention and with my essay.

        I also agree with you that the system has true ('real') properties before it is measured [that is, it is a dog or a taco or a burger before you open the box, not a mysterious 'superposition' taco-dog-burger]. To not believe this leads to the situation I described in "down the rabbit hole" above where the first measurement shows what values the experimenter will choose **in the future**, before they have even made their choice. In other words, acting as if Bell's theorem [or the Copenhagen interpretation] is true leads to nonsense.

        You describe the wave as "informing it how to behave". I would not interpret this literally. The particle and physical wave function form one inseparable system. The motion of the particle induces the field that constitutes the wave and changes in the wave feed back to the particle. Neither is "boss".

        You propose a universal web of interactions in which every system influences every other system. We know that we have something like this (in the gravitational field, for instance) but the real question is how fast the influences travel. If they travel at the spead of light, then one side of the 'web' may not influence the other side for 14 billion years or so. But what if the changes are instantaneous (as you seem to imply with the word 'simultaneity')? Then every change propagates instantly to every other system, the reaction propagates back immediately, and the reaction-to-the-reaction propagates to all other systems immediately and all possible future changes and all reactions to these changes all happen at once, resulting, I believe, in nothing happening. So there must be a finite speed, but then one is back to such long delays that only local interactions seem to make much sense.

        You note that two particles are represented in an abstract 6-dimensional space, three particles in a 9-dimensional space and N particle in a 3N or abstract 'configuration' space. I also treat this is my essay (page 7). Einstein and others, believing that wave could exist *without particles*, concluded that momentum and energy were conserved *only statistically* in 3-space. Schrodinger then FORCED the 3N-dimensional solution to conserve energy (after all, Schrodinger's equation is just the conservation of energy relation, written using operators!) As explained in the essay, this seems to imply (in view of Einstein's confused 'statistical conservation' idea) a certain 'non-locality' that has haunted us to this day. I believe this is also the conceptual source of the "stronger correlations" that Joy interprets in a different fashion. It's complicated, but I believe that reading and rereading pages 7-9 in my essay will help clear it up.

        Finally, you ask about "the origin of this wave". It is the gravito-magnetic field ('discovered' by Maxwell and 'built-into' Einstein's relativity field equations). Just as an electric charge moving in an electric field induces electro-magnetic circulation, a mass particle moving in a gravitational field induces gravito-magnetic circulation. It's always there as a physical wave and I show in the essay how and why it corresponds to the probability amplitude.

        Thanks for those questions. I hope this helps.

        Edwin Eugene Klingman

        Dear Wilhelmus,

        I find that re-reading essays, combined with the comments, helps me to understand these important issues, so thanks for re-reading and for the very good comment above. I look forward to reading your essay and wish you luck in this contest.

        Edwin Eugene Klingman