• [deleted]

Dear Georgina:

Thank you for joining back into the discussion. I do plan to carefully read through your essay (which I've only been able to glance through up to now), and eventually rate it. I hope you do mine as well.

As to your above comment, I agree with it. I think that from what you've said you consider time and energy to be canonically conjugate variables, though, so I'm not sure I see the reason for bringing both into the discussion---unless that relates to your second comment about "why gravity can not be caused by curvature of space time[, even though you are] using a framework that allows general relativity to be seen as valid."

In that regard, I think we are in agreement. On Aug 15 at 18:53, I posted a reply to George Ellis on my topic which contained the following:

"General relativity theory describes space-time as a field that is supposed to be warped in the presence of gravitational mass. In contrast, in order to reconcile relativity with true temporal passage, I've described space-time as the emergent map of events that occur in an enduring three-dimensional universe. As such, the space-time continuum of events is not conceived as a real substantive manifold that warps and moulds due to the presence of gravitational mass; and the need to describe the flow of time associated with a uniformly enduring homogeneous present [in cosmology; this statement's given within the context of George's comment], makes the basic concept of space that truly warps under the influence of gravity seem difficult to reconcile. For instance, in cosmology we take the description of perfect fluidity to be valid on the large scale, but if space-time is a substantive manifold that's truly warped under the influence of mass, so that the local passage of time is really influenced by localised mass, is it really very consistent to say that there should be a cosmic time that passes at the same rate in our Local Group as it does in the Coma cluster? Although the description of space-time that's given by Einstein's equations seems to coincide with the idea of a substantive manifold that truly dynamically warps under the influence of mass (although, in what dimension is the warping of space-time described as dynamically changing? Dropping the assumption of a global simultaneity-relation in space-time that coincides with a uniform flow of cosmic time, while retaining the concept of dynamical change, seems to lead to Zeno's paradox of infinite regression), if an absolute cosmic time is required in order to counter the implication [from the Rietdijk-Putnam argument] that we must only imagine ourselves as existing in a block universe, it seems that some more definite background metrical structure must be required to account for that.

"And that's exactly what the RW metric provides in standard cosmology; therefore, although the local passage of time will be different in different gravitational fields and in different states of motion, the standard model still describes uniform global evolution. The same is true in the SdS cosmology I mentioned in my essay, given the description of r as the cosmic time coordinate. The difference, however, is that in FLRW cosmology the overall curvature of space and the evolution of the scale-factor are supposed to be determined by the large scale average energy content of the universe. Therefore, general relativistic dynamics are incorporated into the theory following the prior assumption of a cosmological background metric. Furthermore, this idea is supposed to be correct according to general relativity theory, so that, in taking the RW metric as background structure and passing it through Einstein's equations, we find that the overall empirical and theoretical consistency of the theory implies that the perfect fluidity of matter should be a good approximation to the large scale average; but it's really debatable whether the large scale distribution of matter really has approximated very well as a perfect fluid since structure formation, and it's anyway this aspect of the theory that really makes the horizon problem such a big problem [notwithstanding inflation].

"Now, the idea that the evolution of our Universe might really need to be described through a well-defined background metric, through which space-time emerges as the map of events that occur in the Universe, seems better suited to a metric-affine theory, whereby the metric and local connection are independent quantities and gravitation is described in terms of torsion rather than curvature. If this were the case, then regardless of what the background metric would be (i.e., regardless of the [possible] triviality [of] its stress-energy tensor), space-time would be described locally through different solutions to the Einstein field equations [that could well contain non-vanishing stress-energy].

"Therefore, if the SdS cosmological background could be used as such to describe the existence of galaxies on its fundamental worldlines, and if the distribution of galaxies would appear isotropic from every such perspective, it would be a legitimate cosmological background for a universe that *should* expand at all times, at a well-defined rate that would turn out to be modelled precisely by the flat LambdaCDM scale-factor, regardless of the actual curvature of space or its global energy content. Therefore, it would agree with empirical observations in our Universe, going a large way towards explaining why the Universe does expand, and would eliminate the flatness problem as well as the need for large amounts of dark matter and dark energy---and the horizon problem would no more be a problem than the requirement to account for that particular background metric. But then, it should be noted that this particular metric has the same form as the one that will describe the final state outside every bound cluster of galaxies in our Universe..."

Neither George, nor anyone else, has offered anything in response to this. Since we agree that there can be both "universal simultaneity as well as the observation of relativity, without contradiction"---and I have demonstrated in my essay how this can work in the case of special relativity, with the mathematical theory emerging as the appropriate description of events that occur in an emergent universe with the required inertial and causal structures---I wonder if you (or anyone else) have any thoughts on this.

Best regards,

Daryl

    Jonathan:

    I have argued explicitly that I think synchonicity is the wrong way of looking at things. I'm convinced there is a Cosmic Present, in which events that occur at the same "time" may be called "simultaneous", but the physical description from relativity theory demands that this global simultaneity-relation cannot be the same as what's "synchronous" for arbitrary observers; i.e., things that happen at the same "time" in the former sense don't necessarily happen at the same "time" in the latter sense. I've described in my essay exactly how I think it's possible for SR to emerge as the correct physical description of phenomena in all inertial frames in such an emergent universe, using the same postulates that are used to derive the theory in any case, and shown explicitly why in that situation it is wrong to define "synchronicity" and "simultaneity" synonymously. I'd really like it if you'd carefully read though that derivation/thought experiment and comment on it.

    Best,

    Daryl

    Hello all,

    without a preferred frame of reference, as in standard SR, observers moving differently estimate each other's 'now' moments in a way that is inconsistent. No universal time emerges. They can even look at each other's watches through telescopes and allow for light travel times, and also for time dilation. They still get results that don't match up. That's why many people see time as more local, and less universal.

    This applies in SR with or without the spacetime interpretation, and the local aspect of time might in fact help to explain why the spacetime interpretation is wrong - by making long distance simultaneity meaningless, which would mean that Minkowski's geometry depends on a false assumption. This would remove block time, and all the contractions that go with it.

    If you have a preferred frame of reference, such as that of the background radiation, then you can try to make time dilation an effect involving deviations from an underlying universal time rate. But without a preferred frame, it's hard to see how there can be a universal time.

    Best wishes, Jonathan

      Jonathan:

      How is it that you're privy to "Zeno's version"? As with all pre-Socratic philosophers, Zeno's writings didn't survive. His "paradoxes" are known to us through Aristotle's writings. And while your description is probably closer to that than mine, the argument is invalid for the same reason in either case---Zeno denies duration in principle and considers only subsequent states,---and not for the reason you've stated.

      Daryl

      Ah, hello Daryl,

      Sorry, I've just see a post of yours to me I didn't notice before, drawing a distinction between 'synchronicity' and 'simultaneity'. Will look at your essay again. I think our posts crossed in fact.

      Best wishes, Jonathan

        You can't simply remove the metrical relation between events and still call your idea physics. In this respect, you should carefully read and think about Edwin's post from Aug. 24, 2012 @ 02:32, which I think nails the issue with defining existence as something mystical outside the past light cone, as you seem to want to do.

        Regarding your last paragraph, with a preferred reference frame, you *can* describe time dilation as an effect involving deviations from an underlying universal time rate, since the mathematical theory gives a consistent description. In relativity theory, it's impossible for there to be a universal time without a preferred system of reference, and vice versa; the two are equivalent.

        Hi Jonathan.

        Brilliant. Wonderful. Thanks very much! I'll just make one suggestion for when you read it again: please pay close attention to the reason why "observer" B cannot possibly ever "see" (i.e., exchange information, influence, or otherwise ever be in causal contact with) "observer" C'.

        I also missed this post when I typed the one above.

        Best,

        Daryl

        Hello Daryl,

        I'll be on the road again with my partner from today, and would be wrong to comment on your approach in any complete way. But I can see that given a preferred frame, and coming from that, an underlying universal time, the rest of it might well work, and probably does.

        One question is, can we assume a preferred frame? Einstein said we can work with one, as in your quote, but he was talking about a working approximation. And both Einstein and Weyl talked about that approach to cosmology decades before the modern experiments with particles at high speeds, which show that it's very hard to make a case for a preferred frame, except as an approximation. I know your approach includes things that are emergent, so that might make it possible somehow, but looking at the foundations, and what's really going on underneath these things, it's hard to put in a preferred frame. I'm interested in addressing the clues we have, rather than finding ways around them, and they're very counter-intuitive. But because the local aspect fits with several things at once, as in my previous post, I'm particularly interested in that. We all have our different ways of seeing these things, good luck with yours...

        Best wishes, Jonathan

        • [deleted]

        Dear Daryl,

        Much of what I say relates to the explanatory framework that I am using. There is a high resolution version of diagram 1 in my essay discussion thread. The space-time is output from data processing, a fabrication (like an artificial reality, only its completely natural).All of the rest (not the fabricated output)exists fully simultaneously on the other side of the reality interface. But there is also continuous change (energy) generating new potential sensory data,(that might become incorporated into a fabricated reality) and generating that absolute passage of time. That is why Zeno's paradox is not a reality when the explanatory framework is used. Change, energy, and Object universal passage of time can not be separated.

        Though I don't understand all of the intricacies of what is being discussed I do think the recently expressed temporal ideas such as (Aug. 24, 2012 @ 17:24 GMT addressed to Jonathan) are very relevant and fit precisely the framework I have developed on the FQXi site since posting my essay in the last competition. I don't want to take up any more of Edwin's thread.I have looked at your essay too but it is complicated for me.I am not a qualified physicist or cosmologist. I wanted to get my head around it better before commenting. Happy to talk on your thread or my own.

        Hi All,

        As noted several places, many essays build on earlier essays. For this reason I would like to reproduce a comment I made on George Ellis's thread, which treats the two-way flow of causality: top-down and bottom-up. Another essayist, Benjamin Dribus, presents a causal metric approach. And I found Carey Carlson's essay on causal set theory a helpful tutorial to causal set theory. My sense is that causal set theory is a mathematician's theory, or a physicist 'gone native'. As I understand it, one begins with time (as an ordered binary relation) and no space. Thus, to handle George's two-way causal flow we appear to need multiple time dimensions -- not a solution that appeals to this physicist.

        Also mentioned were quantum phases depending on "the entire universes involved". My essay instead derives 'finite extent' wave functions from a classical field and explains how these relate to probability amplitudes and superposition of [infinite] Fourier components. There is no "quantum wave function of the universe", only local waves.

        Which brings us to two-way causality. My previous essays assumed the universe as based on one physical substance (and *nothing else*) and assumed this substance (the primordial field) could evolve only through self-interaction. This led to a scale-independent solution (hence, per Nottale, motion-invariant, ie, time-invariant) with no meaningful physical interpretation of time until the original perfect symmetry breaks. In this sense I begin with space and no time versus the assumption of time and no space.

        Although difficult to summarize in a comment, the point is that the essential nature of the primordial field (which turns out to be gravity) is to support self-interaction (since there is initially absolutely nothing else to interact with) and this (evolving as it has into the world as we know it) is at the root of the ability of our universe to support top-down as well as bottom-up causality.

        Edwin Eugene Klingman

        Dear Eckard Blumschein,

        As your questions on your own thread are very relevant to my essay, I am copying my response to make the information available were. You asked about an electromagnetic (EM) wave versus the QM wave my essay postulates is the basis of the QM wave function.

        I view a 'single' EM wave as a pure sine wave of 'infinite' extent. The scaled linear superposition of such components is of course the basis of Fourier analysis.

        The key physical basis of such EM waves is their ability to propagate (through a medium or vacuum) far from the source of the radiation. In contrast, the wave that I describe is a circulating field (according to the weak field approximation to GR) induced by a 'mass current density' which has units of momentum density, mv where m is mass density and v is velocity. This wave is best viewed as a 'vortex' which has one field component, C, (versus two, E and B for EM waves) and does not propagate away from the source but travels *with* the source, soliton-like. There is no 'infinite' aspect to this wave but it does decay over a finite distance. Without the finite range of the 'trailing vortex' (analogous to aircraft wingtip vortices) the wave would not extend over the range of excited orbits and there would be no interference leading to quantized stable orbits.

        You provided a link, http://en.wikipedia.org/wiki/Circular_polarization, to an article discussing circular polarization, that contains a nice animation showing a circularly polarized E-field wave. Note that this wave propagates far from the source, unlike the C-field wave and note also that the E-field is a radially directed field from the axis of propagation, whereas I picture the C-field wave as circular (or cylindrical) circulating about the axis of propagation, and centered on the inducing source current density, as shown in fig 2 in my essay. This is a quite different physical phenomenon.

        As for the 'left-handed nature' of this wave, the GR equation is curl C = -p where p is the momentum density. I interpret the minus sign to indicate left-handed circulation. This is compatible with many left-handed aspects of particle physics, from neutrino to boson, and even shows up in biological molecules. The implications are too many to discuss in a comment, but I find them significant.

        Finally, you say "You seem to add some temporal and spatial restriction which is entirely unknown to me". You are correct. I have combined de Broglie's wavelength-momentum relation p = h/lambda with the GR equation curl C ~ p to obtain: lambda (dot) curl C = h, where h is Planck's constant. This is interpreted as a quantized 'volume' (as shown on page 5) and I show how an atomic orbit can be viewed as an integer multiple of such volumes. This is a new physical relation that has never been proposed before and probably takes some digestion from those who think everything is already known about quantum mechanics -- we should just "shut up and calculate". In addition, I believe that there are other implications, based on a geometric algebra approach, which I hope to develop further in the future.

        I hope that this comment is helpful.

        Best,

        Edwin Eugene Klingman

        Hi Ed and others,

        Gee there are a lot of fascinating comments on this page. I had intended to leave a remark in response to the comment to Eckard above, but after going back and reading the last ten days or so of comments, all my opinions are washed out. But I will have something to say about the circulating C-field before long.

        Maybe the minus sign in curl C = -p does not have to refer to handedness but could simply signify curving inwardly rather than outwardly. This could have something to do with the topology of the particle rather than spin per se.

        I'm still thinking about this.

        Regards,

        Jonathan

          Hi Jonathan,

          Yes there are a lot of fascinating comments on this page. Thanks for reading them! And you just added a fascinating comment. I'm fairly sure that the minus sign is indicative of handedness, but I would love to hear a topological explanation that made sense and opened up new possibilities. Keep thinking!

          Best,

          Edwin Eugene Klingman

          Hello Edwin and Friends,

          I've had a little time for my thoughts on the subject to coalesce, so here goes. If we assume the S3 topology applies to the electron, for example, would not the circulating C-field of the moving particle trace out one fiber of the Hopf fibration? That way; the path could be circular, from the C-fields point (or spiral) of view. And so; the evolution of the field from any point on the surface would be always toward the center - almost.

          My guess is that the correct orientation to imagine is with the fiber bundle leaving a hole in the center equal to the Schwarzschild radius of the particle's mass. This 'always spiraling inward' aspect might be what results in the minus sign (in curl C = -p), rather than indicating the particle's handedness, per se. This would allow the model to be in closer agreement with the Zitterbewegung interpretation, and I think with the ideas expressed in Michael's diagrams - attached to the comment above.

          Does this make sense?

          Regards,

          Jonathan

          Hello again,

          I thought this might be a good place to raise the question of whether viewing particles as topological objects might account for the observations of Jenkin and Fischbach of varying decay rates for nuclei, depending on Sun-Earth distance. Apparently this has taken on a new dimension recently, as with more sensitive measurements it works as a kind of early warning system for solar storms.

          This would argue heavily for the interpretation that the fabric of spacetime is also of the nature of S3, topologically speaking. Or at least; I think that a topological description with a non-trivial twist in the fibration might easily account for such an effect as follows. When there is a mass ejection, this is a ripple in the topological fabric in the region of the Sun, in effect it is a rapid partial eversion of the Sun's mass.

          Would anyone care to comment? Is this relevant here?

          All the Best,

          Jonathan

            Hi Jonathan,

            Rather than assume that S3 topology applies to the electron, the C-field naturally evolves to a torus [ as schematically shown on page 5 in my previous FQXI essay ] with a key frequency being the Zitterbewegung frequency. The "hole" in the center has no apparent connection to the Schwartzschild radius but the topology does support the spin one half property of the electron. This is a stable configuration to which the field naturally condenses under the curl C ~ -p weak field equation with appropriate assumptions.

            I don't really understand your suggestion about the Hopf fiber leaving a hole equal to the Schwartzschild radius of the particle mass or the 'always spiraling inward' aspect. I'm impressed by how quickly you've come up with such a topological solution, but the solution I describe above seems to evolve according to the weak field approximation to GR and also leads, under reasonable assumptions to the fine structure constant. The consequences of this model are developed in "The Chromodynamics War". I believe that the natural appearance of the Zitterbewegung frequency, the spin one half properties, and the fine structure constant provide points in favor of the model.

            Finally, I should point out that while the 'condensing C-field' leads to a stable particle, any linear momentum of this particle then induces a *secondary* circulation which is the wave function discussed in my current essay. Thus the C-field actually accounts for both [primary] particle AND [secondary] wave in QM.

            Hope this makes sense to you.

            Edwin Eugene Klingman

            Jonathan,

            I had not heard of the recent Jenkins and Fischbach varying decay rate correlated with solar storms. My earlier interpretation [page 415 in "The Chromodynamics War"] is based on neutrino interaction with nuclear structures based on particles of the type described above. I find this far more feasible than a topological explanation. But if there is a topological explanation of the type you suggest, there appear to be enough people working in this field to eventually figure it out.

            To clarify my point: I am not opposed to topology, in fact, the topology of the torus is more subtle than is usually realized [I believe] but it is one that evolves naturally from real physical fields, not one that is made up from thin air, in search of an application.

            I hope others have comments on this question of decay correlation.

            Edwin Eugene Klingman

            • [deleted]

            Edwin,

            The use of the weak field equation definitely has an advantage that it can provide a link between quantum theory and general relativity. I totally share your idea that there can be reality with the matter wave and it can be related to relativity. One question that may encounter to replace the wave function with real wave is the unobservable overall phase. The wave function can be phase shifted without changing the probability density but a real wave will look different. Will clarification on this point help further substantiate the idea?

            Sincerely

            Hou Ying Yau

              Dear Hou Ying Yau,

              Thanks for the comment. I am glad that you share an appreciation of a real wave as the basis of the wave function. As for the phase of the wave, I do not believe it is measurable in any way. How it is shifted, and what the effects of this will be, is an important question that must be addressed. And yes, it will help either substantiate the idea or will work against the idea. I am investigating this and other aspects but cannot yet answer the question. Many of the current essays are providing me with new ideas, as I am sure is also the case for you.

              Additionally, another thread brought to my attention the PNAS article by Menzel et al. of June 12, 2012 vol 109 #24 on "Wave-particle dualism..." wherein a double-slit experiment using two entangled particles (based on down-conversion) observes the wave aspect on one leg at the same time that a particle is detected on the other leg. I believe this to be the first simultaneous experimental detection of particle and wave properties. I will write more on this after studying the paper.

              I expect that we will be seeing much more experimental and theoretical support for the idea that "There *IS* Reality Beneath Quantum Theory".

              Best,

              Edwin Eugene Klingman

              • [deleted]

              Edwin.

              Thank you for sharing the information. I am also writing a paper on collapse of wave and entanglement. This information will be extremely useful. I agree with many of your ideas and we have very similar approach. I hope we can communicate further in the future. My e-mail is hyau@fdnresearch.us

              Sincerely,

              Hou Ying Yau