Dear Georgina,
Thank you for your comments. I'm glad that you found several aspects of the essay spoke to your interest. I still commend you on your excellent essay and wish you luck also.
Edwin Eugene Klingman
Dear Georgina,
Thank you for your comments. I'm glad that you found several aspects of the essay spoke to your interest. I still commend you on your excellent essay and wish you luck also.
Edwin Eugene Klingman
Dear Edwin,
you are kind to me. I wish I had the ability to really appreciate what you have written and say something so nice in return. I have read some of the other very complementary comments on this thread, which show that it is my shortcoming and not your essay that is at fault. Good luck.
Hi Edwin,
I really enjoyed this paper -- I could overlook every nit which I question, and come away only with the argument that the wave function is not probabilistic -- and still be satisified.
So I offer the following as commentary, not criticism.
You write: "We can safely ignore wave functions of infinite extent, but all treatments of atomic orbits are based upon the assumption of an integral number of wavelengths--the link that connects wavefunction to both energy and probability."
Measured experimental outcomes are always integral (no such thing as half an event). I was both puzzled and impressed in first being exposed to Joy's framework, that he was addressing a quantum experiment and there was no probability function in it. None at all. It was only after some time that I was able to work out that the absence of a probability function implies absence of boundary conditions at every scale, which implies absence of reference coordinate frame, which can be explained only by a continuous function in a topological model. Eureka, as our friend from Belgium would say.
We also reach Joy's derivation of -a.b by different paths. To me, it's clear in his one-page paper that the result is the reduction to an input argument for a function continuous from a topological initial condition. That's not saying that it can't be derived another way.
Just one more comment, concerning dialogue here with Daryl, and the characterization of solutions to polynomial equations as analagous to superposition -- just shows how differently physicists and mathematicians think. The number of solutions corresponding to polynomial degree are *all* real solutions, not in superposition. That's the fundamental theorem of algebra! LOL!
Anyway -- thanks for a good read, and best wishes in the competition.
Tom
Hi Tom,
Thanks for reading my essay and for your gracious comments. I read your essay and plan to comment. All I remember at the moment is that I very much liked your last paragraph.
Based on all of the "Disproof" blogs, I knew that you would have some trouble with this paper, but I'm glad you worked through it and found it interesting. From our many previous exchanges we both know that our views are quite different despite our mutual desire for an essentially classical (i.e., continuum-based) approach to reality. As the Zen Buddhists say, once you go too far down the path, you have trouble getting off. This applies to us as well -- once we have made things fit together in our minds such that we think we have the truth, it is very hard to see other's truths. I think you and I have things that fit together very well in our own minds but do not overlap to a great extent. I'm sure we share some truth.
I meet with a local group and one of the group has pushed me on how my theory relates to Joy (which he has studied) and I have recently understood both what Joy has done and what I have done in his framework much better than I express it in my essay. I'm writing up the overview now. I think you would enjoy it.
As you remark about Daryl, and about your understanding of Joy's results, physicists and mathematicians do see things quite differently.
Anyway, thanks again Tom.
Edwin Eugene Klingman
Yo, E.E.K., you asked me, back on the thread of G.F.R. Ellis, F.R.S., to say something here.
I'm afraid I'm far from sure that the mathematics of the QM formalism refers to anything apart from the probability of observing certain quantum events under defined experimental conditions. "Wave function" may be simply an attempt (of precisely the kind Bohr -- yes, I know: hiss the villain -- warned against) to picture that which cannot meaningfully be pictured or diagrammed. Bohr blamed complex numbers and noted that the trend had already surfaced in relativity ... first Minkowski's imaginary time axis, then later the Friedmann universe model adopted by Einstein. QM soon picked up the ball and ran with it.
Micro-wise you first diverge from classical physics with half-integer spin and right off the bat there's a choice: you either accept that a realm of reality exists in which a sphere has the properties of a Moebius strip or else face the possibility that the math you're employing so productively doesn't refer to anything you can concretely envision: its terms are purely symbolic. (Feynman never claimed his diagrams were literal pictures of reality either: they're high-class equivalents of the cheat-notes Sarah Palin jots on her left palm.) Ditto the thing we call Wave Function, this Cosa Nostra.
(Exits hurriedly)
Oh, Bell ...
I know for a fact that BT is NOT violated in macroworld experiments using sets of separable physical objects. It's solid classical mathematical logic, as Venn-diagramming it conclusively proves. So it's sound stuff.
Since it's obviously violated in quantum experiments I accept that quantum ontology is significantly different from classical ontology. I also buy into the idea that we're coarse-grained measuring instruments up here and that's probably why we don't perceive violations.
Hi nmann, thanks for the comments. Of course you may be right, along with Bohr (hiss) but I think you're not. I don't know how much attention you've been paying to Geometric Algebra, but I'm much more comfortable with complex numbers now that I understand their interpretation in that formalism.
As for spin one-half, I too spent many years worrying about that puppy, but it now falls out of my theory in a way that makes more sense than the Mobius strip. This essay is devoted to quantum mechanics, but there is a particle physics aspect of this theory, and spin makes physical sense there in a way that I envision.
So you and Bohr may be right, but I'm increasingly convinced that you're wrong.
The good thing is, we'll probably know before too long (at least if you're wrong.)
Thanks again,
Edwin Eugene Klingman
nmann: This is a harder comment to respond to. I'm finding that others have different ideas about Bell's theorem, and some of those ideas I don't quite understand. But I am more convinced now than when I wrote the essay that Joy's framework is appropriate, and that my theory fits into that framework very well. The no-go theorems that I reference in the essay (PBR especially) argue for the reality of the wave function, versus just information. This too should become clearer before long (I hope).
Edwin Eugene Klingman
Hi nmann,
You wrote: "BT is NOT violated in macroworld experiments using sets of separable physical objects."
How on earth do you know that? There has never been a single experiment carried out to check what you are claiming. In fact I put my last penny on my claim that Bell-CHSH inequality would be violated as strongly in the macroworld as it is in the microworld, provided an appropriate experiment in the macroscopic domain is carried out. Below I am attaching a proposal for just such a macro-experiment. This proposal also appears as Chapter 3 of my book.
I categorically claim that if my proposed experiment is carried out, then the violation of Bell-CHSH inequality would be confirmed in the macroworld and Bell's theorem would be finally put in its rightful place---i.e., in the graveyard.
Joy ChristianAttachment #1: 32_0806.3078v2.pdf
Joy Christian:
Material similar to this has been around for decades. We used to try violating BT as a game. We'd use letters in words in blocks of text. Bunches of coins or keys, or coins and keys together. Food containers pulled at random from kitchen shelves. All you do is define your set, select three characteristics applicable to the set members that can be answered Yes or No (longer than, shorter than, lighter than, heavier than, boxed or not, tinned or not, picture of product on container (or not) ... use your imagination. Set up your truth table and go for it.
http://www.upscale.utoronto.ca/GeneralInterest/Harrison/BellsTheorem/BellsTheorem.html
I'm too lazy to follow the proper link protocol. Now ... BT can be "violated" macroscopically by simulating entanglement, the probably most notable example of that trick being Dirk Aerts' two-vessels-connected-by-a-tube gedanken. (By the way, he says he contacted you once re: algebra but you were too busy fighting off the attacks on one of your early papers to be of help.) It's not the same thing as a genuine violation, however.
Hi nmann,
Thanks for the link. I do not want to pollute Edwin's blog space with our own private discussion, but let me make two quick remarks: (1) I do not recall being contacted by Dirk Aerts. I think I would have remembered and responded. Perhaps there was some communication problem. (2) I do not mean the kind of violations of BI you mention. I mean genuine violations using the correct macroscopic analogue of the microscopic EPR correlation. That is what I have proposed in the paper linked above. But thanks anyway for your comments.
Joy
Joy,
Dated 21 July 2008, part of an online discussion (on GUTalk, now defunct) of "The Violation of Bell Inequalities in the Macroworld". I pretty much facilitated the whole thing by first mentioning the paper and then dragging him into the resulting debate. (I told him people were calling him silly and crazy. As in fact they were. That piqued his interest. He's a fine gentleman, BTW.) You and others here might find this interesting in general:
"Yes, I have read Christian's work. It is, in my opinion, a good example of seeing too much the mathematics and not the rude engineers-like physics reality. One is not in the first place interested in the signs of observables with respect to the Bell-inequality situation, but in the (ordinary) probability of outcomes. By the way, Marek Czachor and myself contacted Christian with respect to his model when it appeared on the archives a year ago, most of all because we also are working with Clifford Algebra's (using them to built a computation with all the advantages of quantum computation but without the need of quantum structures in Hilbert space, see for example http://uk.arxiv.org/abs/quant-ph/0611279 ), but he is very much struggling defending his stuff at the moment (see his reactions to some of the critiques). Now, what he does is interesting, but for a different reason, namely Clifford Algebra structures indeed manage to capture some of the quantum structure, which is also why we have been able to use them for a kind of quantum-like computation. It remains hence an interesting question, since Clifford Algebra structures refer to classical geometric structures in physics, in which way this may lead to getting a better grip on the way that some of the quantum structure can also be found in ordinary geometric structures of macroscopic reality. However, I don't think it will be in the way that Christian puts forward in these recent papers, and it is my guess that Bell's theorem is not touched by it for what it means for the nature of reality with respect to locality and hidden variables."
nmann,
Interesting discussion. Yes, Marek Czachor did get in touch with me just after my first paper on Bell came out back in 2007. Dirk's comments about my work, however, are outdated and miss the point about my program. Unfortunately he is not the only one to miss the point. My program is misunderstood by many, including some of its supporters. I urge you to read at least the one-page paper of mine I am attaching below to see for yourself how outdated Dirk's comments are. More details of my program can be found in the second paper I am attaching. I am taking liberty to attach these papers here with hopes that Edwin won't mind, because he is interested in my work and discusses it in his essay.
JoyAttachment #1: 14_disproof.pdfAttachment #2: 8_Origins.pdf
I am very concerned about my argument against Bell's theorem being misconstrued even further than it already is. Therefore---at a risk of displeasing Edwin---let me reproduce my comments on his essay here from the "Disproofs" blog:
---------------------------------------
Dear Edwin,
Thank you very much for discussing my work in your essay and citing my book and a paper. I have just looked at it very briefly. You have discussed your ideas very clearly, and with beautiful pictures.
I am sorry to say, however, that your argument against Bell does not address his concerns, as far as I can see. In particular, your model does not satisfy his "free will" requirement (i.e., the requirement 6 among the 8 requirements I have listed in Chapter 5 of my book). According to his "free will" requirement Alice and Bob should be completely free to choose any measurement directions at will, for each run (or trial) of the experiment. To show you why your model violates this requirement, let Alice and Bob choose to keep their respective measurement directions *fixed* for all runs of the experiment. They are perfectly entitled to do so under the "free will" requirement. But then your model cannot reproduce the correlation -a.b, since it depends on Alice having chosen a smaller angle than Bob's chosen angle for one half of the runs of the experiment and a greater angle than Bob's chosen angle for the other half of the runs of the experiment. This also makes the model non-local. For how is Alice to ensure the 50/50 balance without knowing which angle Bob has chosen for all runs of the experiment? You cannot simply hope that the balance will turn out to be 50/50. There has to be a mechanism (or "common cause") in the model that ensures that balance.
In short, your model is not a counterexample to Bell's theorem, or a local model for the EPR correlations. It is not that easy to construct a counterexample to Bell's theorem. In fact it is very nearly impossible.
I nevertheless wish you good luck with your essay, for you have discussed many other things besides Bell's theorem. I am sure they will turn out to be both interesting and valuable to many.
With best wishes,
Joy
------------------------------------------
tom :) I am happy to have friends.
You know the domains , universal are so essential ! How can you have a correct superimposing if the foundamentals are forgotten? The parallelizations must be analyzed in the continuous function with specific limits and series .The simulations and the predictions are correct if and only if all the datas , encoded are dterminsitic respecting all our foundamental laws at all 3D scales.
The fractalization of an universal finite serie is a finite serie, with only an infinite when we add or multiplicate this serie of uniquenss.After all, it depends of what we want to explain.
Edwin, I don't agree about what you said. The maths and physics are the same, the universal essence and its distribution of numbers is in harmony when the mathematical tools are utilized with the most important rationalism. The maths help for a real understanding of our physical laws. These two topics are unified and in harmony.The maths are inside this physicality! It does not really exist differences between maths and physics. An anti thesis is just like a symmetry. Like when we see our face in the miror, it exists only one singularity and its codes...
Regards
Dear Joy,
Since I am using your framework, it is only fair that you feel free to comment on its use, so I am happy with your above comment. I am also happy, since I essentially disagree with your physics while retaining your mathematical framework, that you are not offended either. The comments on the "Disproofs" blogs have gotten so nasty that I completely wish to avoid such here. As I remarked to Tom above, I knew, from his support for you on your blogs that he would have trouble with my essay and of course I knew that you too would have difficulty accepting my interpretation of the appropriate use of your framework.
Tom's comment was most gracious and I reproduce his first sentence:
"I really enjoyed this paper -- I could overlook every nit which I question, and come away only with the argument that the wave function is not probabilistic -- and still be satisified."
I'm pleased that he focused on the agreement we have and declined to go into deeper argument. So, Joy, I will also copy over my initial response to you on the Disproof blog, then I will address the specifics in a followup comment:
Dear Joy,
Thanks for reading my essay and responding here. Your argument about Alice and Bob having free will implying that they never vary their angles is not the way I would have interpreted his requirement, but you do have a point. I expected to encounter arguments as a result of publishing this brief treatment in the essay, and of course will consider the arguments that accrue and try to address them.
You know that I think you have an excellent framework and believe it will win out in the end. I hope that I can end up fitting into it in a way that you will support.
Best regards,
Edwin Eugene Klingman
Dear FQXi'ers,
Since my volume form, based on the left-handed C-field, is *not* free to change between runs (as does Joy's physics), I need another means of cancelling the unwanted terms that show up. To do so I choose Bell's "free will" requirement, that I interpret to mean independent uncorrelated choices made by 'Bob' and 'Alice'.
Joy has pointed out that "free will" does not mean the 50/50 distribution that I have assumed. He may be correct on this point, and I will have to answer it, but my first response is that I believe my interpretation is what most researchers assume. In fact they make great efforts to assure that Bob and Alice make *independent* choices, and even go so far as to arrange random decision making processes that will apply while the particles are in flight, removing completely the possibility that Alice and Bob can collude.
In his 2010 book, "Dance of the Photons", the foremost researcher, Anton Zeilinger actually defines "the definitive experiment" as the one in which 'a' and 'b' are selected independently (satisfying my needs) and his definitive experiment "changes settings during the flight of the particles." Thus, despite Joy's claim that my assumption is invalid, it is the assumption employed in the definitive experiments, that is, "both sides operated independently".
Therefore, Joy has brought up an intellectual point that I must address, but the definitive Bell-type experiments seem to agree with me. As Zeilinger states: "events are just events, and they are in no need of interpretation." and "The explanation of the events depends on later actions and decisions we or someone else might make." Zeilinger basically accepts the Copenhagen Interpretation, which my essay goes to great lengths to discredit. As for Bell, Zeilinger does say: "...the final verdict is not in yet" and "Whatever conclusion you draw is up to you."
So I acknowledge that Joy has made a criticism that I must address, but I believe the actual facts are on my side.
Edwin Eugene Klingman
Dear Edwin,
I so hate to disagree with you, but disagree I must.
As a model builder your primary obligation is to reproduce the experimental facts. I am afraid, however, that your model fails this first and the most basic of all tests.
Forget Bell's theorem for a second. Consider a typical EPR-Bohm experiment. Without prejudice for or against Bell, fix the two measurement directions chosen by Alice and Bob. For definiteness, let these directions be a and b, with 30 degree angle between them. Now let Alice and Bob make a large number of observations. They will record +1 and -1 in their logbooks, independently of each other. Then, at the end of the day, they will get together to compare their notes. They will then calculate the correlation between the numbers recorded in their notes, in the standard, well established way. What will they find? They will find a definite, fixed, number:
E(a, b) = -a.b = -cos(30) = 0.866...
What is more, this is exactly the number predicted by quantum mechanics.
Now your obligation is to reproduce this number. Bell and his theorem are irrelevant. Anton Zeilinger is irrelevant. I am irrelevant. What is relevant is that you must reproduce this number for the experiment described, with the fixed directions a and b. If you cannot reproduce this number without varying the directions a and b, then your model fails. It is as simple as that. No elaborate interpretations or deeper reflections are necessary. No need to worry about what Bell did or did not say.
Now I make a claim: The only way you can reproduce this number and beat Bell is my way. There is no other way. It is a zero sum game. Either you accept my whole package and beat Bell, or you accept non-locality or non-reality in the manner of Bell. There is no third way. The reason for this is the fact that EPR correlations are what they are because of the geometry and topology of the unit parallelized 3-sphere, not because of anything else. This is Nature's choice, not mine.
You are of course free to reject the last paragraph, but you are not free to reject the experimental facts described in the preceding paragraphs.
Best,
Joy
Joy,
This last week I met with several physicists to discuss my model. They asked several questions which I have had to work to answer, and in doing so I now have new insight into (and increased confidence in) my own model. Having worked for several years alone, I have answered most of my own questions, and am now in process of working on others questions. I *always* learn something by answering questions that I myself have not thought of. So I welcome your questions, and I expect to gain from figuring out the correct answer. You may be correct, but if I have to choose between a known field -- first proposed by Maxwell, then predicted by Einstein's relativity, and recently measured by Gravity Probe B and with a coherence factor measured by Martin Tajmar -- that satisfies all of the points raised in my essay and also has the particle physics implications I have worked out over the past few years, and a 7D topology that switches handedness in convenient fashion to accomplish one main thing, beating Bell's claim about -a(dot)b, then I am going to continue going down my path. You have had a number of years to meet others challenges, and still have not met their objections, although I give you full credit for the yeoman-like efforts you have put forth. I have had a few weeks now to respond to others objections and am satisfied with my initial progress.
Of course you may be correct. I realize that. But it is very early in the game for my model, and I must admit that the many successes that my model has had in the realm of particle physics encourage me to hope for similar success in the realm of quantum mechanics. As you mentioned in your first reply to me, I "have discussed [in my essay] many other things besides Bell's theorem [and you are] sure they will turn out to be both interesting and valuable to many." I too am sure that will be the case.
So with all due respect for your expertise in Bell's theorem, and with recognition that I must eventually address all of your points, I am nowhere near throwing in the towel. I realize that your investment in the 'switching topology' will influence your acceptance of my model, and I expect challenges from you. I merely hope to avoid the hostility that has arisen on the Disproof blogs.
Thanks for your inputs.
Best regards,
Edwin Eugene Klingman
Dear Edwin,
Ideas can be considered in many different positive ways, as just ideas, separate from egos. You are right to consider all questions and criticism as positive opportunities, either to exhibit the merits of your model or to improve on it over time. I admire your confidence and resolve. Good luck.