Dear Ben,
You have gone through my paper extentsively. Thanks. Pls give me some time to go through yours once again and make my comments.
I will have to respond to your comments part by part, since the posts cannot be too long. In this post I will take up your comment about "Lorentz invariance".
You wrote: "5. I agree that Lorentz invariance as Einstein conceived it is not exactly right, but it is close enough to being right that I prefer to regard it as an approximation of the correct principle. This is what I mean when I discuss "reinterpreting the principle of covariance" in my essay. "Covariance" is usually understood to mean "Lorentz invariance," i.e., group symmetry. I do not think group symmetry is the right way to think about this principle".
Let us look at this issue from a historical point of view. And also let me quote Einstein in regard to his own views on evolutions of concepts.
'The concepts originate from experience by way of 'abstraction' i.e. through omission of a part of its content... (They) easily achieve so much authority over us that we forget their earthly origin and take them for something immutably given. They are then stamped as 'necessities of thought', 'a priori given', and so on. The path to scientific progress is often obstructed by these errors for a long period of time. It is therefore no idle amusement at all, when we are preoccupied with analysis of concepts that have been current for a long time and with showing, upon what circumstances are dependent their justification and utility and how they emerge, individually, from experiential data. Thereby their excessively great authority is broken down. They are omitted, if they cannot be made properly legitimate; corrected, if their co-ordination with the given objects was too carelessly established; or replaced, if it is possible to construct a new system which we, for some reason prefer" (4, p.19).
There are a lot of mathematical baggage that has been overlaid in trying to interpret the EMPIRICAL EQUATION for the DISPLACEMENT that Lorentz discerned by TRIAL AND ERROR by ITERATING the data of Kaufman's experiments on fast moving electrons. By 'interpret' I mean what mainly Poincare (and Einstein too) did to give it a twist to make it fit into his line fictitious thinking of about the "nature of SPACE and TIME". (Note: Displacement is what is measured directly, "SPACE" is where the displacement occurs). Now people have been so indoctrinated that they cannot discuss LT in simple terms as an expression for displacement, without getting confused into using this mathematical baggage concerning the 'nature of space'.
So if we are to understand what Lorentz transformation really means, we must forget all the interpretations that have been assigned to it, and consider its point of birth by 'curve fitting' of data, " showing, upon what circumstances are dependent its justification and utility and how it emerged, individually, from experiential data".
What has happened is when Lorentz curve fitted data for particles moving at NEAR LIGHT VELOCITIES (v/c tending to 1) he had unknowingly missed out the term v/c which should have belonged to that empirical equation. Then this equation with the v/c term deficient was taken over by Einstein as true and perfect and made it into a postulate of the theory.
If you consider the equation x' = gamma (x - ut), it gives very accurate results when v/c is almost equal to one. As a result when the empirical equation of Lorentz conforms to the DISPLACEMENTS of particles at very fast velocities, the credit goes to SRT. But everybody forgets that every time x' gets confirmed, time does not correspond to t' = gamma. t(1- ux/c2) as SRT contends, but SRT gets a free pass on this.
However, as the velocity declines to 0.9c, 0.8c, 0.7c there is a progressive degeneration of the accuracy x' in a non-linear manner. Below 0.5c the degeneration becomes more marked. And at much lower velocities the degeneration of results reach exponential proportions.
We can now understand why the theory has been named "special" theory. It is valid only for the special condition of v/c tending to 1. So there is a schism in physics, SRT [meaning displacement x' = gamma(x -ut) and gamma' F for force] for very fast motion and Newtonian mechanics (meaning x= vt for displacement and F for force). But this leaves out the vast middle ground between very slow and very fast motion. Should not there be an equation that covers the whole range of velocities from very slow to very fast?
From the above observations (about the degeneration of results with declining velocities) we can re-construct the equation to be valid for all velocities v by following simple logic. If the LT equation is valid for the condition v/c = 1, then the equation that will be valid for all values of v will be
x' = gamma. (v/c)(x - ut) or x' = gamma .vt(1- u/c).
This then is the general equation of motion valid for all velocities. It can be verified by the computer analysis of all the relevant experiments done in the last century.
Your next comment: "6. I agree that "all inertial frames are not equivalent, but..." is closely connected with why the discrepancy (wrt classical x = vt) in a straightforward displacement measurement had to be interpreted as arising from the "nature of space and time". I will touch upon this in my next post.
(My essay: : http://fqxi.org/community/forum/topic/1549)
Best regards,
Viraj