Dear Ken Matusow,
Your essay is well written, and you make some pretty big claims. Obviously these cannot all be "proved" in nine pages. One of the nice features of FQXi is that it's perfectly legitimate to use comments on your thread to expand upon your arguments and the details of your essay, and I suggest that you might wish to do so here.
I also agree with the essence of Jose Koshy's remarks above.
Your key point seems to be that the distance of any point in the system must be an integer multiple of your dimensionless constant c. This seems to imply a lattice, with walks propagating only outward from the origin. Is it truly a random walk if steps are taken in only one direction? If you can walk 'backwards' this would seem to conflict with the requirement that the distance from the origin is proportional to the number of steps taken, given a constant of proportionality. Am I missing something?
If it is the case that the system walks in only one direction (after the first step is taken) then need it be discrete? The discreteness is then equivalent to picking integer points on an outgoing ray with constant velocity. Perhaps I'm confused by how you got from the origin to the point (0, 2) by going out the x-axis then stepping in the y-direction. Is one confined to a ray or can you walk in two dimensions? Since most of your paper deals with implications of this basic system, you might wish to expand on the most basic details of the system here.
Best regards,
Edwin Eugene Klingman