Essay Abstract
In this essay we argue that the partial abstraction used to describe reality in physics can be extended to a complete formal system by the addition of an axiom of measurement, elevating physics to a branch of formal mathematics. Once we have established parity between the two fields, we discuss how one might conduct the experimental verification of important mathematical results, such as the Riemann hypothesis. Using this axiom, we are provided with a framework for the definite separation between objective reality and physical reality, with the precision of our measurement system working as a continuous ladder between them.
Author Bio
Christopher Duston is a mathematical physicist whose current research focuses on the representation of 3- and 4-manifolds as branched covering spaces to construct models for the gravitational field. He has also worked on exotic smooth structures, semiclassical gravity, loop quantum gravity, and cosmic strings. He holds a B.S. in Astrophysics from the University of Massachusetts at Amherst, an M.S. in Astrophysics from the Pennsylvania State University, and a Ph.D. in Theoretical Physics from the Florida State University. He is currently an Assistant Professor at Merrimack College in North Andover, MA.