I have considered these questions, Akinbo...
1st - the Mandelbrot's cusp at (.25,0i) is the minimum extent and highest energy represented in the Mandelbrot figure. But the theory would indicate that this translates into a minimum time step. However; for anything to persist longer than the Planck time, in this theory, it must have a non-zero size.
2nd - particles act as probes of the properties of a given space, retaining and conveying information about separability and separation. I would say that once forms exist as self-contained independent units, which can move relative to each other, this defines or helps determine the dimensionality of space as well.
3rd - I think part of the meaning of Math is that it preserves some features of natural law that are persistent, from cosmological era to era, from inception to its demise or the beginning of a new cycle, or from universe to universe in a multiverse scenario (more below).
As for atoms of space, however; that concept speaks mainly to how the fabric of spacetime emerges, and one can't discern individual unit cells after that. If space and time are relativistically indistinguishable; then there is a lower limit of around 10^-13 cm - where particle separability is possible - in which Relativity is defined. And item 2 answers this.
The Cosmology based on the Mandelbrot Set does not tell us whether a cold dark end is the universe's ultimate fate, or whether a new cycle would begin, as I can show you the graphical representation of both scenarios. Likewise; it supports the idea that the universe is singular and allows for the possibility of multiple universes. This suggests these possibilities coexist equivalently.
All the Best,
Jonathan