• FQXi Essay Contest - Spring, 2017
  • Is Milgrom’s MOdified Newtonian Dynamics (MOND) fundamental for philosophy, science, and the physical interpretation of string theory? by David Brown

I have conjectured that the Koide formula is essential for understanding the foundations of physics and that Lestone's theory of virtual cross sections is essential for understanding the foundations of physics. Note that even if the conjecture that quantum information reduces to Fredkin-Wolfram information is wrong, my Koide conjecture and my Lestone conjecture might still be correct. However, the issue of pole versus running mass would somehow have to be incorporated into a generalized Koide formula and a more mathematically sophisticated Lestone theory.

What is precisely the energy scale of a process?, Physics Stack Exchange, 2015

Pole mass vs. Running Mass vs. Other Running Parameters, Physics Stack Exchange, 2015

According to Alexander and Yunes, string theory seems to predict that the cosmological constant is induced by supersymmetry breaking. If this breakage occurs at the electroweak scale then the cosmological constant should be about 10^48 times larger than it actually is. If this breakage occurs at the Planck scale then the cosmological constant should be about 10^115 times larger than it actually is.

Alexander, Stephon & Nicolas Yunes. "Chern-Simons modified general relativity." Physics Reports 480, no. 1-2 (2009): 1-55. arXiv.org preprint (page 5)

My guess is that string theory with the infinite nature hypothesis predicts MOND-compatible supersymmetry. (Any form of supersymmetry that is MOND-incompatible is guaranteed to be wrong, according to empirical evidence.)

My guess is that string theory with the infinite nature hypothesis predicts Wolfram's cosmological automaton with no supersymmetry. (Supersymmetry should be replaced by Wolframian pseudo-supersymmetry, whatever that might be.)

What is measurement? Why does measurement exist? According to Motl, "Observation is always a messy event in principle although, in practice, the inaccuracy of the classical approximation may be extremely, expo-exponentially tiny."

What erases and can restore the interference patterns, The Reference Frame blog, 13 March 2018

In the Copenhagen Interpretation, the observer ultimately creates the observation or at least enables a classical approximation to some quantum event. What precisely is a probability distribution? What precisely is a real number? What precisely is a positive integer? Any definition that uses the concept of a complete infinity (or a potential infinity) might involve an infinite amount of ambiguity. Is observation a natural process that separates the boundary of the multiverse from the interior of the multiverse? Are time, space, energy, and quantum information merely approximations generated by Wolfram's cosmological automaton using Fredkin-Wolfram information? My guess is that string theory with the finite nature hypothesis implies no string landscape and no supersymmetry, while string theory with the infinite nature hypothesis implies the string landscape and MOND-compatible supersymmetry. Google "kroupa milgrom".

Is supersymmetry an empirically valid concept? Can supersymmetry predict dark matter particles that can be empirically confirmed?

According to Stephen Hawking and Leonard Mlodinow, "The ultimate theory must be consistent and must predict finite results for quantities that we can measure. We've seen that there must be a law like gravity, and we saw in Chapter 5 that for a theory of gravity to predict finite quantities, the theory must have what is called supersymmetry between the forces of nature and the matter on which they act. M-theory is the most general supersymmetric theory of gravity. For these reasons M-theory is the only candidate for a complete theory of the universe. If it is finite--and this has yet to be proved--it will be a model of a universe that creates itself. We must be part of this universe, because there is no other consistent model."

"The Grand Design", 2011, pages 180-181

Have string theorists underestimated Milgrom, McGaugh, and Kroupa? Have string theorists underestimated Fredkin and Wolfram?

Has the Pioneer anomaly been satisfactorily explained? Antonio Fernández-Rañada and Alfredo Tiemblo-Ramos presented a model in which the Pioneer anomaly is a cosmological effect due to a discrepancy between astronomical time and atomic time ... They wrote, "... This shows that the predictions of our model on the cartography of the solar system are exactly the same as in standard physics, independently of which time is used. The model is thus fully compatible with the results obtained by the Viking mission ...."

"On the compatibility of a proposed explanation of the Pioneer anomaly with the cartography of the solar system." arXiv preprint arXiv:0909.0912 (2009) (pages 8-9)

If Wolfram's cosmological automation is empirically valid, then there is a smoothing problem (to approximate energy and spacetime) and there is a flattening problem (to approximate string theory with the infinite nature hypothesis). If string vibrations are approximately confined to 3 copies of the Leech lattice in sting theory with the infinite nature hypothesis, then the Koide formula might be interpreted as square-root(mass) = 16 dimensions of bosonic uncertainty. There might be an interpretation of 26-dimensionals bosonic string theory consisting of 10 dimensions of general relativity + 16 dimensions of bosonic uncertainty from a 16-dimensional unified boson.

error in previous post: Replace "square-root(mass) = 16 dimensions of bosonic uncertainty" by "square-root(mass) = 4 dimensions of bosonic uncertainty". It might be possible to formulate a duality principle in which mass-energy for bosons corresponds to 16 dimensions of alpha-prime & hbar uncertainty for bosons.

5 days later

Consider 2 hypotheses:

Hypothesis 1: Time, space, energy, and quantum information are approximations generated by Wolfram's cosmological automaton using a finite network of Fredkin-Wolfram information.

Hypothesis 2: As positive integers grow larger, they become less meaningful in terms of science and engineering.

Consider an admonition from Errett Bishop:

"Do not ask whether a statement is true until you know what it means."

Bishop, Errett. Schizophrenia in contemporary mathematics, page 6. American Mathematical Society, 1973, prl.ccs.neu.edu/img/sicm.pdf

Errett Bishop, Wikipedia

I have suggested to Professor Milgrom that relativistic MOND is simply the alleged Fernández-Rañada-Milgrom effect, i.e., replace the -1/2 in the standard form of Einstein's field equations by -1/2 + dark-matter-compensation-constant, where this constant is approximately sqrt((60±10)/4) * 10^-5 -- however, Professor Milgrom seems to believe the Gravity Probe B science team. I suggest that the Gravity Probe B science team misinterpreted their own experiment. Have pro-MOND and anti-MOND astrophysicists carefully studied this issue?

Everett, CW Francis, D. B. DeBra, B. W. Parkinson, J. P. Turneaure, J. W. Conklin, M. I. Heifetz, G. M. Keiser et al. "Gravity probe B: final results of a space experiment to test general relativity." Physical Review Letters 106, no. 22 (2011): 221101. arXiv.org preprint

I suggest that the "patch potentials" problem is merely an imagined explanation for an actual detection of the alleged Fernández-Rañada-Milgrom effect. I suggest that the 4 ultra-precise gyroscopes functioned correctly and the calibration procedure which corrected for the "patch potentials" problem actually corrected for the alleged Fernández-Rañada-Milgrom effect. I have suggested to the Gravity Probe B science team that they should investigate the "patch potentials" problem in the manufacturing process for the 4 ultra-precise gyroscopes.

Can Litvinov et alia provide a decisive test of the alleged Fernández-Rañada-Milgrom effect? If dark matter has positive gravitational mass-energy and zero inertial mass-energy, then an empirical test might soon disconfirm (or confirm) the hypothesis that dark-matter-compensation-constant = sqrt((60±10)/4) * 10^-5 .

Litvinov, D. A., V. N. Rudenko, A. V. Alakoz, U. Bach, N. Bartel, A. V. Belonenko, K. G. Belousov et al. "Probing the gravitational redshift with an Earth-orbiting satellite." Physics Letters A (2017), arXiv preprint

Consider 3 hypotheses:

Hypothesis 1: If Wolfram's cosmological automaton has a timing mechanism that displays itself in some dramatic physical way, then dark-matter-compensation-constant is likely to be nonzero.

Hypothesis 2: If time is finite, then Einstein's field equations need a Koide cutoff.

Hypothesis 3: If energy-density cannot approach +в€ћ, then Einstein's field equations need a Lestone cutoff.

Does string theory with the infinite nature hypothesis imply supersymmetry and no MOND? Does string theory with the finite nature hypothesis imply MOND and no supersymmetry? Is MOND the key to overthrowing the anthropic principle?

Anthropic principle, Wikipedia

"The anthropic principle is an observation, not an explanation."

-- Burton Richter

"Theory in particle physics: theological speculation versus practical knowledge." Physics Today 59, no. 10 (2006): 8.

7 days later
a month later

Anyone who wants to pursue string theory with the finite nature hypothesis, might want to consider the following two publications:

According to Wolfram (1986), "Continuum equations are derived for the large-scale behavior of a class of cellular automaton models for fluids. The cellular automata are discrete analogues of molecular dynamics, in which particles with discrete velocities populate the links of a fixed array of sites. Kinetic equations for microscopic particle distributions are constructed. Hydrodynamic equations are then derived using the Chapman-Enskog expansion. Slightly modified Navier-Stokes equations are obtained in two and three dimensions with certain lattices."

Journal of Statistical Physics, November 1986, Volume 45, Issue 3-4, pp 471-526 "Cellular automaton fluids 1: Basic theory" by Stephen Wolfram

Bredberg, Keeler, Lysov, and Strominger (2012) presented a construction which "is a mathematically precise realization of suggestions of a holographic duality relating fluids and horizons which began with the membrane paradigm in the 70's and resurfaced recently in studies of the AdS/CFT correspondence."

Irene Bredberg, Cynthia Keeler, Vyacheslav Lysov, and Andrew Strominger. "From Navier-Stokes To Einstein." Journal of High Energy Physics 2012, no. 7 (2012): 146. (arXiv.org preprint)

Why am I fixated on the nonzero dark-matter-compensation idea? First, the idea seems to me to be compatible with the preponderance of the empirical evidence. Second, the idea seems to me to be the only way of betting against Einstein once without betting against Einstein twice. If any one of my three suggested modifications to Einstein's field equations is empirically wrong, then I would bet 100% on Einstein and back the idea of MOND-compatible dark matter particles that have variable effective mass depending upon nearby gravitational acceleration.

7 days later

I have suggested that Heisenberg's uncertainty principle is always empirically valid whenever measurement is possible, but Einstein's equivalence principle fails empirically in 4 different ways.

According to Einstein,

"A little reflection will show that the law of the equality of the inertial and gravitational mass is equivalent to the assertion that the acceleration imparted to a body by a gravitational field is independent of the nature of the body. For Newton's equation of motion in a gravitational field, written out in full, it is:

(Inertial mass) cdot (Acceleration) = (Intensity of the gravitational field) cdot (Gravitational mass).

It is only when there is numerical equality between the inertial and gravitational mass that the acceleration is independent of the nature of the body."

Equivalence principle, Wikipedia

Consider 4 hypotheses:

(1) Dark matter has positive gravitational mass-energy but zero inertial mass-energy.

(2) Dark energy has negative gravitational mass-energy but zero inertial mass-energy.

(3) As energy-density approaches a cosmological maximum, the equivalence principle fails due to the Lestone cutoff. (Leptons and quarks have nonzero virtual cross sections.)

(4) As energy-density approaches a cosmological minimum, the equivalence principle fails due to the Koide cutoff. (The transfer of energy from the boundary of the multiverse into the interior of the multiverse nears completion as energy-density approaches a cosmological minimum. There are 3 generations of fermions because Wolfram's cosmological automaton generates 64 dimensions of uncertainty which are equivalent to 16 dimensions of virtual boson paths plus 48 dimensions of virtual fermion paths. )

13 days later

Consider 6 hypotheses:

(1) String theory is the only mathematically plausible way of unifying quantum field theory and general relativity theory.

(2) String theory (with the infinite nature hypothesis) predicts supersymmetry.

(3) String theory (with the infinite nature hypothesis) implies that the equivalence principle is valid for ordinary matter and dark matter.

(4) Einstein found the correct mathematical formulation for the equivalence principle.

(5) String theory (with the infinite nature hypothesis) implies that, after quantum averaging, Einstein's field equations are 100% correct.

(6) String theory (with the infinite nature hypothesis) predicts Einstein's field equations.

Are the 6 preceding hypotheses empirically valid? Consider some ideas of J. D. Bekenstein:

"Literally taken the MOND recipe for acceleration violates the conservation of momentum (and of energy and of angular momentum) ..." (page 2)

"... What principles should the relativistic embodiment of the MOND paradigm adhere to? ...

° Action principle ...

° Equivalence principle ...

° Positivity of energy ...

° Relativistic invariance ...

* Causality ...

° Departure from Newtonian gravity ..." (pages 4-5)

"Tensor-vector-scalar modified gravity: from small scale to cosmology" by Jacob D. Bekenstein, submitted in 2004 & revised in 2005, arXiv.org

I suggest that empirically successful MOND does indeed imply that gravitational energy is not conserved and that string theory with the finite nature hypothesis is empirically valid. (If dark-matter-compensation-constant were equal to zero, then Wolfram's cosmological automaton would not have a uniform timing mechanism.)

4 days later

According to Edward Witten, "String theory forces general relativity upon us ..."

"Unravelling string theory", Nature, December 2005

Many string theorists seem to think that Milgrom, McGaugh, Kroupa, Sanders, and Scarpa are somehow deluded -- but are these string theorists correct? I conjecture that string theory with the finite nature hypothesis implies real MOND and no supersymmetry, while string theory with the infinite nature hypothesis implies pseudo-MOND and supersymmetry. What do I mean by "pseudo-MOND"?

Can the string landscape explain the empirical successes of Milgrom's MOND? Consider 4 hypotheses:

(1) After quantum averaging, Einstein's field equations are 100% correct.

(2) All dark matter particles are WIMPs with D-brane charges.

(3) Within the string landscape there is a D-brane shock wave that makes it appear that Einstein's field equations are slightly wrong (due to D-brane charges acting detectably upon some WIMPs but non-detectably upon other WIMPs.)

(4) In the standard form of Einstein's field equations replace the -1/2 by -1/2 fake-function, where the fake-function seems to be there because the pro-MOND astrophysics are unaware of the D-brane shock wave acting upon some of the WIMPs.

Are the pro-MOND astronomers and astrophysicists suffering from some type of N-ray delusion?

N ray, Wikipedia

Is MOND empirically invalid?

"Lessons from the Local Group (and beyond) on dark matter" by Pavel Kroupa, 2014, arXiv preprint

Are there paradoxical multiverse quantum jumps, D-brane shock waves, or multiverse wormhole strikes that somehow mimic MOND? I say that the empirical evidence favors Milgrom, McGaugh, Kroupa, Sanders, and Scarpa -- however MOND does not make sense in terms of string theory. Imagine that the string landscape makes sense in terms of quantum field theory. There might be gradients of D-brane charges within the string landscape -- if the gradients are sufficiently lopsided there might be a multiverse quantum jump (MQJ) of gravitational energy from one alternate universe to another. The alternate universes might be classified into 3 main types: the negative CC universe, the zero CC universes, and the positive CC universes. An MQJ might not be small -- it might amazingly large. Think of Einstein's field equations with one side derived from the geometrical tensor and the other side consisting of the energy-momentum tensor. Imagine an analogy between a lightning strike and a MQJ. The ground of the lightning strike corresponds to weird MONDian WIMP particles. Because the pro-MOND astronomers fail to realize that the weird MONDian WIMP particles exist, they have altered the wrong side of Einstein's field equations. The MQJ should be incorporated into the energy-momentum energy according to the true nature of the MONDian WIMP particles. By attempting to model a MQJ that roughly matches MOND, string theorists might find new dualities, new types of compactification, or a new paradigm.