Dear Malcolm,
thanks a lot for the thoughtful and fun comments! I'm glad you liked my essay.
You write: "And for you might this ontic structural - quantum - realism also be a form of wave function realism where the quantum side of that realism equates to a pure potentiality for experience rather than a thing-like external quantum world?" Yes in fact! I'm stunned that you managed to formulate what I mean so clearly, even clearer than I did myself in the essay!
Regarding Dennett's real patterns, I'm a big fan of this (and referencing it myself), but I think there is a hidden subtlety that is related to other issues like Goodman's New Riddle of Induction. To say what a pattern is, you have to choose a compression algorithm, or a universal machine (which is analogous to a choice of language). For finite data, the notion of compressibility will depend on this choice. Any ultimate definition of a real pattern will have to deal with this issue in some sense...
I really like this paragraph of yours:
"... and the history of science becomes the history of technological advances in our real pattern finding (from Kepler's telescope to the Michelson-Morley experiment and on to Aspects' entangled photons) leading to whatever necessary paradigmatic updates might be needed on the structural relations side with their subsequent technological innovations and so on... Which brings us to the contemporary conceptual mess of 21st C quantum foundations!"
:-)
Very well described!
Just a final comment on this question of yours:
"I assume this is where your 'law without law' research project begins, with a first person perspective using algorithmic probability to assign structure to sense data patterns?"
Even though algorithmic probability is used in this approach, the idea is somewhat different. In some sense, it starts with a form of methodological solipsism: there is your state S now (intuitively, containing your sense data and memory), and you will be in another state T next. In that approach, what that next state will be doesn't depend an any "external world" (as we would usually think), but only on algorithmic probability P(T | S). Why such an approach? Well, suppose we are interested in "observer paradoxes" like Parfit's teletransportation paradox (or others, e.g. simulating observers on a computer), and we claim that there is an objective chance of what such an observer will see in those situations. Then the answer, almost by definition, cannot be grounded on properties of the external world (even if there is one).
Surprisingly, one can show that, if we assume such law, then things look in the long run, for any observer, pretty much *as if there was* an external world. So the notion of "world" is emergent there, and an abstract notion of "self" is fundamental.
In case you're really interested, there's a link to an online talk on my homepage (mpmueller.net). But enough of advertisement.
I'll try to have a look at your essay. I'm curious now!
Thanks again, and all the best,
Markus