What if a hyperdrive is actually simple in the following way. What if all of the particles we have ever encountered have a characteristic velocity range of c. It doesn't matter how much propellant we use, it will never let us travel faster than c because the fastest it can travel is c.
Consider a 100 metric ton test rocket. There is a proppellant container labelled: TOP SECRET/Property of Area 51/c'=10,000,000c/10Kg/hyperspeed proppelant. You read the propulsion system specifications. The propulsion system is a simple rocket designed to achieve a non(c')relativistic backwards momentum thrust of v = 0.01c' = 10,000c. It's a mysterious substance with the strange propert that it has a velocity range of c'=10,000,000.
Assuming that we don't care about how many g's the test craft can take, Ray, who just now navigated back to earth, agrees to be our test pilot. He get's inside the rocket, turns the ignition key, and blasts off into space again. Considering only equal and opposite momentum, Ray burns through the whole propellant canister in two seconds. Ray is as flat as a pancake due to accelleration. But something strange occurs.
Conservation of linear momentum: mass of rocket M = 10,000Kg, initial velocity v=0, mass of c' propellant = 10Kg proppelled at v=10,000c(non c' relativistic). Momentum p = Mv = m(10,000c). Velocity of rocket v = (m/M)(10,000c)=(10Kg/10^4)(10,000c)=10c = FTL. Once again, USAF watched Ray until he reached about .9C, then their radar, which can only bounce off him at the speed of light c, started to lose track of the rocket. As Ray hit the speed of light barrier, c, he vanished into hyperspace. After Ray got a brief suntan from all of the photon radiation as he passed the speed of light barrier, he discovered their was nothing above the speed of light, no stars, and no radiation above c. Ray got bored, so he pulled out his Gameboy and started playing. This was unfortunate because of the chunk of mysterious material with a velocity of c', now called Munroe propellant, happened to be floating along Ray's trajectory.
Is it possible that GR only applies to mass-energy with a characteristic velocity c? What if there are particles with a characteristic of c' that exist. What would our interaction with them be like?