Dear Juan,

Here I try to answer the questions posed by you in your post above.

The non-commutative Minkowski spacetime I talk of is defined in the technical endnotes. In this spacetime there live the `particles' [i.e. matrices], each having coordinates (q,t). I only have in mind a noncommutative generalization of ordinary mechanics, resulting here in a 4N dimensional noncommutative configuration space for N particles.

Regarding the introduction of the phase space (q,p,t,E) : The resulting dynamics is more general than quantum dynamics, as I discuss in my essay. So it is not required that one works off shell. The reduction from here to ordinary quantum theory, where time is not an operator, is discussed in the essay : the dominant part of the Universe must become classical, providing a classical time, for us to be able to formulate quantum theory in the standard way.

Regarding the Block universe argument : My reason for suggesting a Block Universe in the underlying analog dynamics is just that I do not see any other way out, when classical time has been raised to operator status. But I will see the references you mention, and try to understand what you refer to as Pavsic's interpretation (i).

Arrow of time : I would not claim that the explanation I give is the only one or the best one. But I feel [subject to the cosmological argument being given : please let me know why you say it fails] my reasoning is plausible, even without trying to build up technical detail. If the Universe begins in a single microstate of the Block Universe described by analog dynamics, the Boltzmann entropy is zero by definition.

I hope to make time to see the references on canonical theory in your essay. I appreciate your points that the canonical theory can deal with nonequilibrium situations, and with fluctuations in a manner more general than discussed in my essay.

Once again, thank you very much for your careful reading of essay, and your detailed comments, especially regarding `Stueckelberg time'.

Kind regards,

Tejinder

Dear Georgina,

Thank you for your very kind remarks. I too have enjoyed reading your essay.

I can try to summarize here the key points of my essay. I believe our present understanding of quantum theory is incomplete, because of the quantum measurement problem, and because of the presence of an external classical time in the theory. A *potential solution* is suggested by proposing that quantum theory is an approximation to a deeper theory. This deeper theory, motivated by the great work of Stephen Adler, is the classical mechanics of matrices [particle positions and spacetime coordinates are matrices]. this is an *analog* theory. The digital quantum theory that we know of emerges from this analog theory in the thermodynamic approximation. This emergence explains the puzzles of quantum theory.Furthermore one can one explain how our analog macroscopic world emerges from digital quantum theory. Thus one has a three layered description of dynamical laws : analog, digital, analog. The `three and a half' comes from noting that the world of our physics laboratories consists of quantum systems interacting with analog classical apparatuses in a classical spacetime.

Good luck to you too, for the contest.

Kind regards,

Tejinder

  • [deleted]

Dear Tejinder,

Thank you for taking the time to summarize the core of the essay. It is helpful.I do agree with the first paragraph of your summary. Also that QM is part of a deeper theory. I would have it as part of a greater theory, encompassing both QM and space-time. Time being the "problem child".

I also see a 3 level reality. Foundational level unobservable objects, data transmission( One might say the raw file of photon data) and emergent space-time image reality. QM models the unobserved timeless objects. Unique input selected by type and position of detector allows space-time construction. Emergent as a temporally distorted artifact from the transmission delay of data between object and observer.I suppose that as a non physicist my explanations may appear naive. Though Einstein did say "Everything should be made as simple as possible, but not simpler".

I have said I am not competent to comprehend the work that you discuss, let alone evaluate it. So please forgive me for not doing so. What a dull world if we all thought in the same way and had identical talents and interests. It is good that you have brought it here for others to see and consider.

Once again, Good luck, Georgina.

  • [deleted]

Dear Tejinder,

While your approach is quite different from mine, and quantum theory is not my primary concern, I nonetheless appreciate your list of belonging problems.

I am not sure whether a peculiar 'influence' outside the light-cone has really been experimentally verified in EPR experiments. You gave no reference for your sentence: "The 'action-at-a-distance' in an EPR type experiment, which Einstein called spooky, has been experimentally proven to exist [however, we know it cannot be used for signalling]." If you refer to Nimtz type claims, I strongly disagree. To my knowledge there is no correct evidence for action at a distance.

I tried to explain why Planck's constant has nothing to do with the non-commutativity.

What I am tempted to ironically call the Schulman length between micro and macroworld might have a simple explanation: Quantum theory is affected by erroneous interpretation after arbitrarily choosing a complex ansatz. You may trust in my competence in this case.

What about the allegedly compelling accuracy of agreement between predicted and measured values, I see two question marks. First I recall Lighthill's theory of cochlea whose results were tweaked very close to reality, even too good as to be honest, because the passive model did not yet consider cochlear amplification. I also recall not yet understood discrepancies, in particular concerning a paper by Gompf et al. Secondly, I suspect there might be a qualitative mistake even in case of quantitative agreement. Before I abandon the causality conjecture I am ready to put any theory in question, even spacetime.

Please do not take it amiss if I consider it justified to look for possible mistakes at the most basic level, and this layer is in my understanding the fundamentals of mathematics. Do you object?

Regards,

Eckard

    Dear Tejinder,

    Thanks by confirming my above assumption about the 4N dimensionality of the spacetime in your Essay.

    When classical dimensional time is raised to dimensional time operator, the Stuckelberg-like evolution time continues labeling the evolution of the generalized quantum states, without any need to take a Block universe viewpoint. Indeed, as showed in the references cited in my Essay, the picture based in an evolution time is more fundamental.

    The cosmological argument cannot explain the arrow of time because initial low entropy states lead to evolutions incompatible with the second law. In the Chapter 1 of the BAS reference that I gave to you in the forum of my Essay, the authors show how an initial low entropy state belongs to both semigroups Lambda^{} and Lambda^{-}, whereas only Lambda^{} is compatible with the second law and the observed phenomena. They then choose the correct semigroup by comparison with observation. It is this selection which explains the arrow of time. Their demonstration can be extended to initial pure states with zero entropy and also to more general classes of dynamical systems.

    • [deleted]

    Your essay was thought provoking and I gave it a high score. I do take some pause with the conclusion that quantum theory is purely a statistical result. Experiments with W and GHZ states illustrate Bell inequalities for a single experiment. I will have to read this again to see how this can be reconciled accordingly.

    Cheers LC

      Dear Lawrence,

      Thank you for your kind response to my essay. I too plan to read your essay soon.

      You raise an important question. Actually, here the statistical character of quantum theory is relevant only in so far as its derivation from the underlying dynamical theory of matrices is concerned. Once one has that derivation, the underlying theory could be `forgotten', in the sense that one is not examining dynamics at the level of precision of the underlying theory. The stochastic nonlinear Schrodinger equation thus derived does describe an individual system, as you rightly point out. The stochastic term drives the quantum system to a definite outcome during a measurement, but because it is a stochastic process, one cannot predict exactly which outcome it is. Only the probability of the outcome can be calculated, and this is proven to be equal to the Born probability. You might like to see the nice discussion in Chapter 6 of Adler's book [Ref. 1 in my essay].

      Good luck to you in the essay contest. Cheers ...Tejinder

      • [deleted]

      Dear Eckard,

      Thank you for your interesting remarks and your criticism is most welcome. I plan to read your essay soon and will leave my comments on your page.

      By `action at a distance' I only meant the experimental verification of EPR correlations and Bell's inequalities by the experiments of Aspect and others. On this aspect, my view of quantum theory is conservative - there is no superluminal signalling.

      More soon, and with best regards,

      Tejinder

      5 days later

      Dear Dr. T P Singh,

      Your essay is thought provoking,because you are trying to explain how digitality arises out of continuous (analog) nature of reality;for that you are inventing the concept of mesoscopic physics.It is a good idea. But in my essay,Iam trying to reconcile digital and analog nature of reality in a different way.Why dont you,please,go thro' my essay and express your openion on it.

      Best regards and great success in the competition.

      Sreenath B N.

      Dear Dr. Singh,

      Ingenuous your vision of a fundamental continuous layer underlying the quantum one, then the classical level, interfaced through the semi-digital layer, in the context of trace dynamics. It seems to capture a deep meaning of the quantum world and its relation with the classical level. The title is very suggestive; it also makes me thinking at the three and a half layers of the dynamical energy.

      Best regards,

      Cristi Stoica, Infinite Resolution

      Dear member Tejinder Singh,

      You wrote: "... your criticism is most welcome. I plan to read your essay soon and will leave my comments on your page."

      Regards,

      Eckard

      Dear Tijender

      My spirits were raised by your exceptional essay. In my view you are absolutely correct in virtually all your assumptions and conclusions (at least all those I think I understood).

      I believe the concepts within our essays completely parallel each other, yet yours is a physics paper and mine is in a wholly different, naive but fully falsifiable and predictive, empirical language. I offer a link between the micro and macro space time structures, equivalent to non commuting matrices or discrete manifolds, with time emerging from it's simple dynamics. You may read my essay title as equivalent to the block universe, using a discrete field model (DFM) and well known boundary mechanism. http://fqxi.org/community/forum/topic/803

      Duality emerges as the simple symmetry transition to implement any change to the analogue energy of motion, i.e. changing f and Lambda to preserve c and E locally.

      You'll see from the thread there are a number of other very consistent essays which build to a fuller picture consistent with yours.

      Our failure would prove to have been in ability of dynamic conceptualisation.

      I truly hope you are able to read and understand the structure behind the model. I will be as happy with any scientific (rather than belief) based falsification as with confirmation, as I have as yet had none.

      I currently have papers in preprint and under consideration further exploring important fundamental consequences. If you have time I will post links.

      Very best wishes and thank you humbly in advance for your views on my essay.

      Peter Jackson

      • [deleted]

      Dear Dr.TP Singh,

      Thanks for your reply and query.I have identified QG field to 'exponentially varying accelerated field' in which the gravity/acceleration varies exponentially.So it is possible for us to derive GR from QG but not vice-versa.Regarding how I have done this can be seen in my article on QG,which you find in my web-site I have mentioned in my essay("http://www.sreenath.webs.com" and click on abstract).The path described in QG field is Logarithmic (Equiangular) spiral path on a plane and conical spiral path in three dimensions.So QG field is a 'Torsion" field.When torsion vanishes QG field becomes uniform accelerated field i.e.,GR.

      I have different views on QM which you see in my above article.In it,I have tried to connect the Schrodinger equation to 'how a particle gains energy in the QG field'.If you want me to send my article by e-mail to you,please,inform me and your mathematical frame work to my work I welcome most.

      Best regards

      Sreenath B N

      • [deleted]

      Hi to both of you,all, you are relevant.here is some ideas for fun.

      The caratheodory method of axiomatization seems universal and I like it, I suppose you also, in logic the kelvin Planck satetment of the the second law is interesting also.Because all is under these universal thermodynamical laws.The specification of an intergrer is always logic respecting the momentum and the kinetic energy.It's really the base of many things our thermodynamics and this heat.The quantum statistical mechanicsis precise and the real degrees of freedom are there in a pure thermodynamical logic.A little of maxwell law of velocities and vibrations and a Boltzmann helping with the correct finite numbe, and it's very relevant.1/2mv²...1/2m alpha²..1/2m beta².....correlated with volumes.The pression and the volumes dance with the velocities of rotations orbitals and spinals and the kinetic energy.....more mvV constant, general for all physical entangled spheres and hop all our thermodynamics and all our Quantum statistical mechanics is simplified and generalized in a spherical logic as the ideal gas.Avogadro will agree no hihii, in all case if the time operator is inserted, thus the relativity can be inserted rationally respecting the entropy and the arrow of time.But the axiomatization still is essential with its limits due to the finite universal serie.That implies an intrinsic cause in the gravitational stability, thus of course not actions at distance, but simply some informations arriving in the gravity and which fuses, it's totally different than a instant action from an other point inside this Universal sphere.The thermodynamics prove that.

      Best to all and good luck in the contest.

      Steve

      • [deleted]

      Tejinder,

      Masterful!

      To your point of experiencing spacetime as classical, while acknowledging the infinite linear superposition of quantum states (and the challenge of computability in finite time) -- you might appreciate a less technical treatment of the same conclusions in my essay ("Can we see reality from here?")

      Best,

      Tom

      I am having to read your paper again. I forgot that I had written on your space here. I responded to your comments on my space at

      http://fqxi.org/community/forum/topic/810

      and I will try to comment further. I will have to finish reading your paper on Monday.

      Cheers LC

      Tejinda

      I greatly appreciate your supportive comments on my essay and the discrete field model, (DFM). I repeat me response below;

      "Thanks for your agreement and sympathy. I'm acutely aware of the need to extend it with mathematical proof to allow physicists to "feel more at home". If you feel you may be of any help in collaboration I'd be delighted. As it's a logic and empirically based 'conceptual' theory the first problem is what to calculate!"

      Perhaps nature is too complex for a single human brain process to make sense of. In the Architectural profession astonishing things are only achieved by teamwork. I not only have to have specialist skills but conceptual overview, and understand and co-ordinate a wide range of brilliant specialists, with entirely different ways of looking at things, into the whole. It seems physics as a whole may benefit from more of that, being more inclusive and holistic rather than exclusive and disparate. I'd be interested in your view, generally and specifically to exploring the DFM.

      Very many thanks for your time.

      Peter

      I read your paper through in detail last night and started writing this. I wrote further today, so this got a bit long. I even looked at Adler huge paper, though being 175 pages in length I of course could not read the whole. The A-M matrices, traceless diagonal elements of i = sqrt{-1} and -i, forms is related to the Kahler matrix. This is a line bundle form of the symplectic matrix. To include commutator structure between position elements [q_i, q_j] = αħ, for α a constant, and similar commutators for momentum, this can be generalized by the Gelfand theorem and Connes' noncommutative geometry.

      For gravity this is clearly an important aspect of quantum gravity. Of course we have a lot of funny ideas about this. In your paper you have the "digital" as a world with quantum gravity. This appears evident by just looking at the Schwarzschild metric element 1 - r_0/r, for r_0 = 2GM/c^2, the Killing vector K_t = (1/sqrt{1 - r_0/r})∂_t. This forms a natural operator for a Schrodinger type of equation Hψ = -iħK_tψ. However, the momentum operator p_r = -iħ∂_r does not commute with K_t, and there is a noncommutative geometry. Another way of looking at this is the element r_0 exhibits fluctuations so that r_0 = δr_0, where δr_0 = f*sqrt{Għ/c^3} = f*L_p for f \in [0, 1]. So a fluctuation of mass-energy in a region of space there is then a fluctuation in the proper time ds ~ (1 - δr_0/r)dt^2, which is a noncommutative situation in energy and time. So there are curiously two different ways of looking at this.

      We have two snags with our ideas of quantum gravity. One in string theory, where the action is formulated as

      L = ∫d^nx sqrt{-1}(R α'R_{abcd}R^{abcd} O(α'^2))

      Requires there to be a classical background, or R_{ab} = λg_{ab}. This background dependence is a major criticism which has been lodged at string theory. However, the LQG folks who raise this complaint have problems of their own. In the assignment of a degree of freedom with each strut in a discrete spacetime there is a vacuum E = 3kT/2 element, which when summed up results in a huge entropy to spacetime. For this reason LQG is not able to reconstruct classical spacetime. String theory on the other hand employs holographic principle which vastly reduces the number of degrees of freedom to horizons and boundaries and these problems are avoided.

      The string perturbation series is also problematic. It appears almost incomputable. We may then be able to work with some finite series, as in an effective theory. The near horizon for a black hole in an AdS_n is where the spacetime becomes AdS_2xS^{n-2}. The AdS_2 has an equivalency to the CFT_1 with isometries of the SL(2,C) group. This is the elementary group which constructs the quantum SLOCC quantum bit structures equivalent to BPS black holes. The CFT_1 is the Diff(S^1) which is the Virasoro algebra, and in this case with two copies bounded on a conformal map of S^1 to a strip. This defines the Hartle-Hawking quantum states.

      The Hartle-Hawking state is constructed by a map from Calabi-Yau three-fold. This constructs the states according to a type of modular form which is related to the partition of integers. This modular form in a Dirchlet L-series has the Riemann zeta function, where its zeros determine the eigenvalues.. The 3-fold in the conjugacy classes of a maximal tori on the F_4 gives the cycle [0, e^{2π/3}, e^{4π/3}], which defines the Eisenstein series E(z), E(2z) E(3z) and the partition function for the quantum states of the AdS_2 ~ CFT_1 spacetime. This is quantum gravity to one loop. This is also equivalently determined by the G_2 group, which in the E_8 is the centralizer of the F_4 group. This extends the work which I present in the paper I wrote for FQXi Building up to AdS_7 will take us up to 6 loop calculations, and extended to 11-dimensional SUGRA to 7 loops.

      What comes after that? Frankly, nothing for in effect we run out of algebra. However, there is something which is going on. The hyperbolic dynamics on H_2 ~ AdS_2 is S-dual to a quartic theory of fermions. This is not my work, but was demonstrated by Zamolodchikov (among the other amazing things that guys did), and physically it means the underlying physics of strings in the AdS_2, or equivalently on the boundary as CFT_1, is that of a fermion condensate.

      The high temperature domain for the string is the Hagedorn temperature. The density of states for a string with respect to modes n is

      η(n) ~ exp(4πn sqrt{α'})

      that defines a partition function Z =~ ∫ η(n)exp(-n/T)dn. The Temperature is computed by 1/T = ∂Z/∂n and the path integral diverges for a temperature greater than

      T_H = 4π sqrt{α'}

      which is the Hagedorn temperature. This is proportional to the reciprocal of the string length. The entropy of the system is the logarithm of the density of states the S ~ 1/nT_H, which in the large n limit is zero. The modes number is given by n = 1/(sqrt{d}M_s), for d the number of degrees of freedom and M_s the string mass. String theory on the AdS_2 transitions into a theory of fermions at this high energy. Strings are then similar to the topological states, such as Skyrmion states.

        continued from above

        If this is so then gravity is an effective theory with a classical background. The middle or semi-digital aspects of the world are a form of effective theory. If gravitation or quantum gravity is an emergent theory, we might also ask the same about quantum mechanics? This is based on some aspects of my paper, which I did not illuminate much. Lightcone structure is a projective structure in the completion of the AdS_n spacetimes by quotient geometry. The lightlike geodesics in M_n are copies of RP^1, which at a given point p define a set that is the lightcone C(p). The point p is the projective action of π(v) for v a vector in a local patch R^{n,2} and so C(p) is then π(P∩C^{n,2}), for P normal to v, and C^{n,2} the region on R^{n,2} where the interval vanishes.

        The space of lightlike geodesics is a set of invariants and then due to a stabilizer on O(n,2), so the space of lightlike curves L_n is identified with the quotient O(n,2)/P, where P is a subgroup defined the quotient between a subgroup with a Zariski topology, or a Borel subgroup, and the main group G = O(n,2). This quotient G/P is a projective algebraic variety, or flag manifold and P is a parabolic subgroup. The natural embedding of a group H - -> G composed with the projective variety G - ->G/P is an isomorphism between the H and G/P. This is then a semi-direct product G = P x| H. For the G any GL(n) the parabolic group is a subgroup of upper triangular matrices. An example of such a matrix with real valued elements is the Heisenberg group of 3x3 matrices

        [/math]\left(\matrix{

        1 & a & b\cr

        0 & 1 & c\cr

        0 & 0 &1}\right)

        [math]

        which may be extended to n-dimensional systems to form the 2n+1 dimensional Heisenberg group H_n of n + 2 entries

        [/math]\left(\matrix{

        1 & a & b\cr

        0 & I_n & c\cr

        0 & 0 & 1}\right)

        [math]

        where for O(n,2) the Heisenberg group is H_{2n+3}. The elements a and c are then n+2 dimensional row and column vectors of O(n,2). These are Borel groups, which emerge from the quotient space AdS_n/Γ, where the discrete group Γ is a manifestation of the Calabi-Yau 3-cycle, and which as it turns out gives an integer partition for the set of quantum states in the AdS spacetime. So both spacetime and quantum structure as we know them are emergent.

        If we return to our more ordinary world, where gravity is classical and for that matter flat and ignored, quantum mechanics does bring to us a series of difficulties. I tend to agree with you that interpretations of quantum mechanics do not appear effective, for they have no empirical means of falsification. The quantum world may be seen equivalently as a many worlds splitting off continually or as Bohmian be-able particles guided on some path by a pilot wave. The simple fact is that quantum physics assumes two things: The first is that a measurement apparatus is infinite, or has an infinite number of atoms or degrees of freedom, and further that an infinite number of measurements can be conducted. These two assumptions are clearly idealizations.

        The difference between a superposition and entanglement is the following. We consider a two slit experiment where a photon wave function interacts with a screen. The wave vector is of the form

        |ψ> = e^{ikx}|1> + e^{ik'x}|2>

        as a superposition of states for the slits labeled 1 and 2. The normalization is assumed. The state vector is normalized as

        = 1 = + + e^{i(k' + k)x} + e^{-i(k' + k)x}

        The overlaps and are multiplied by the oscillatory terms which are the interference probabilities one measures on the photoplate. We now consider the classic situation where one tries to measure which slit the photon traverses. We have a device with detects the photon at one of the slit openings. We consider another superposed quantum state. This is a spin space that is

        |φ> = (1/sqrt{2})(|+> + |->).

        This photon quantum state becomes entangled with this spin state. So we have

        |ψ,φ> = e^{ikx}|1>|+> + e^{ik'x}|2>|->

        which means if the photon passes through slit number 1 the spin is + and if it passes through slit 2 the spin is in the - state. Now consider the norm of this state vector

        = + + e^{i(k' + k)x} + e^{-i(k'+k)x}.

        The spin states |+> and |-> are orthogonal and thus and are zero. This means the overlap or interference terms are removed. In effect the superposition has been replaced by an entanglement.

        So we may think of the these two entangled systems as that for an electron and the other for a C-60 buckyball in two different states of some sort. One of these particles is pretty clearly in the quantum domain, while the other pushes the envelope of what is quantum. However, people have performed two slit experiments with buckballs, where they have to be supercold. We do not have to cool down electrons. So we might imagine the two slit experiment with electron where one slit contains a buckyball that has some phonon state entangled with the electron being present or not. We may then think of there being an atomic force microscope which then measures the buckball and ... up the scale to the Schrodinger cat. There is a process of entanglement which proceeds up the chain. The scale in length or time diminishes, or the complement in momentum and energy diminishes, as the ratio of mass or action between the system and apparatus approaches zero.

        So the curious thing is that we really are operating in the quantum world all along. However, we only see one of the outcomes; we do not see the measurement apparatus in two states or the alive/dead cat. This then leads us to the emergence of the next level in the world, the classical world. While everything is ultimately quantum mechanical, "all the way down," there is the emergence of this classical world which we observe through our senses. It is also the world which we first came to understand with the progression from Galileo and Kepler and culminating in Newton. Of course the Bohmist might object to the idea of the classical world as an illusion, for they say the quantum world is ultimately classical-like or objective in some sense of nonlocal hidden variables. In that language, the classical world is a domain where the Bohm quantum potential is zero. From a many worlds perspective the observer is eigen-branched along only one entanglement path.

        So this is how I would interpret this layering of continuous and discrete structures. At the emergence of gravity this seems to connect with the semi-digital. The extremely high energy world consists of quantum states given I think by the zeros of the Riemann zeta function. However, the fields are continuous, so there is I think at this level a complementarity between the continuous and discrete. Once gravity is classical then you have a 1/2 continuum and 1/2 discrete perspective. This then leads to the classical world which appears continuous.

        Cheers LC

        Tejinder,

        My approach is that you can never fully know reality in spite of models that simulate discrete points in time, but my support for this seems meager after reading your impressive essay.

        Jim Hoover