Essay Abstract
I will propose the notion that the universe is digital, not as a claim about what the universe is made of but rather about the way it unfolds. Central to the argument will be the concepts of symmetry breaking and algorithmic probability, which will be used as tools to compare the way patterns are distributed in our world to the way patterns are distributed in a simulated digital one. These concepts will provide a framework for a discussion of the informational nature of reality. I will argue that if the universe were analog, then the world would likely be random, making it largely incomprehensible. The digital model has, however, an inherent beauty in its imposition of an upper limit and in the convergence in computational power to a maximal level of sophistication. Even if deterministic, that it is digital doesn't mean that the world is trivial or predictable, but rather that it is built up from operations that at the lowest scale are very simple but that at a higher scale look complex and even random, though only in appearance.
Author Bio
Hector Zenil (BSc. Math, UNAM, 2005; MPhil. Logic, Paris 1 Sorbonne, 2006; PhD. Computer Science, Lille 1, 2011) has held visiting positions at the Massachusetts Institute of Technology and Carnegie Mellon University. He is a senior research associate at Wolfram Research, member of the Turing Centenary Advisory Committee, founding honorary associate of the Algorithmic Social Science Research Unit of the University of Trento and editor of Randomness Through Computation (published by World Scientific). His main research interests lie at the intersection of several disciplines in connection or application to the concept of randomness and algorithmic complexity motivated by foundational questions.