[deleted]
Jonathan and Rick
Just to clarify. In my model the S3 of space is *not* a subspace of S7 but the two S3 and S7 form a 10 dimensional product space. This can either be viewed as a torus - if we pick the S1 fibre from the S3 - with an S7 cross-section, or a sphere - if we pick out the S2 base-space of S3 - which has a S7 surface cross-section. The absolutely critical element of my model is that there is a twist in the S7 cross-section in going around the S3 (like a higher dimensional mobius strip or twisted torus) - this is the electroweak vacuum and it picks out the sub-spheres of S7, but in a way that mixes S7 with the S3 spin space. In my model, this gives the reason for why the electroweak charges of the particles are chiral. This is also why my results with a 10 dimensional product space are *not* actually in disagreement with the S7 of Joy's correlation results. Spin (space S3) is correlated with isospin (space S3) and hypercharge (space S1) which are sub-spaces of S7, but colour charges are independent and not correlated with the other observables.
So my model says that viewing S7 as all of space - as Joy and Rick do - will work for spins and electroweak charges - which are correlated in particle physics - but that leaves the colour space unaccounted for. Joy's correlation results imply the *independent* colour space would be S3 (as S7 isn't a group space). The twist in my model of a physical gauge space S7 in going around the space of a closed S3 universe has the peculiar effect of switching S3 spaces in the *measurement* space - the S3 spin space is swicthed for the S3 colour space. The linkage of the subspaces is all important - as is the distinction between physical spaces and measurement spaces - and just how 'the orderliness of the octonions' actually does the rescuing is the piece of the puzzle I'm looking for.
Michael