Doug, et al,
This is a copy of my respond to Doug Singleton on my essay blog.
I have read several papers by Vladimir Dzhunshaliev on octonion field theory, and Merab Gogberashvili is a familiar name as well. Trying to understand how nonassociative mathematics of operators fits into physics is really the hard part. I think that quantum mechanics is purely complex, or C. Of course classical mechanics is R. Gauge theory can be written according to quaternions H. A lot of gauge theory is done though in standard vector form without quaternions. It is interesting though that Maxwell formulated electromagnetism, the first gauge field theory, in quaternions. Field operators in a second quantization act on a Fock space basis to give quantum amplitudes. So we have a relationship that might be heuristically written as π:H --- > C. The question is then whether there is some sort of higher level structure π:O --- > H.
Spacetime I think offers a clue. A black hole horizon has some quantum uncertainty on a scale near the string or Planck length. There will then be an associative uncertainty with three quantum fields, where one of those fields is identified near the horizon. The standard approach to QFT is to assign a harmonic oscillator at every point in space, impose equal time commutators on that spatial surface with the Wightman criterion for commutation, and work from there. Yet that spatial surface on a small scale will have some noncommutative structure and this will lead to a host of uncertainties in assigning QFT operators. If there are event horizons this should lead to an associative uncertainty.
The above "maps" between C, H and O, where a similar map π:C --- > R would be the relationship between quantum mechanics and classical mechanics, are really just forms of the Hopf fibration. The relationship between quantum and classical mechanics is of course a difficult subject in its own right. With each of these "ladders" on the Hopf fibration there is some increased uncertainty. Quantum mechanics saved physics from the UV divergence that classical mechanics predicted with the hydrogen atom. Similarly this may protect physics from divergences with black holes, such as the singularity and maybe with the current big problem of firewalls.
Thanks for the good word. I had a computer crash (virus attack etc) that erased my voting code. I also had it written down on a paper that also went missing. I have not been able to vote on papers for about a week. The FQXi people have so far not serviced my request that it be retransmitted. I have also been a bit slow in reading papers this contest cycle. I see that you have a paper in the list. I seem to remember that last year your paper was riding fairly high, where mine in contrast tanked.
Cheers LC