The team of Jenkins and Fischbach attracted my attention for one reason. Nuclear disintegration are said to be random and impervious to anything. But every other spontaneous phenomenon are subjected to the local rate of passage of time!. Nuclear disintegration may be random but its rate should be subject to local time rate.
This is what I was looking for. I understand the relationship of gravity to the rate of passage of time like Unruh.(1) (Below), they are one and the same.
"A more accurate way of summarizing the lessons of General Relativity is
that gravity does not cause time to run differently in different places (e.g., faster far from the earth than near it). Gravity is the unequable flow of time from place to place. It is not that there are two separate phenomena, namely gravity and time and that the one, gravity,affects the other. Rather the theory states that the phenomena we usually ascribe to gravity are actually caused by time's flowing unequably from place to place."
From this, I was expecting time to run at different rates away from the Sun and nuclear disintegration rates to follow.
This was the basis of a gravitational wave detector I was thinking about... Passing gravitational waves (made of variations of time rate) would change in a specific way the variations in the rate of disintegration of radio-nuclide.... using particle emission time of flight to avoid temporary local time distorsions .... and coincidence detectors for direction ... The question is; how good are we at measuring short time interval? Better than "space" intervals?
Marcel,