Dear Professor Yanofsky,
I agree with the appeal to the anthropic principle in the way that you present it. In order for human beings, or other similar entities, to ask and to answer questions about mathematics and physics, the beings asking the questions must exist. Furthermore, in order for these beings to exist, their environment must be sufficiently orderly and stable. As you say, "If the universe did not have some regularities, no life would be possible." Yes, but this fact would seem to lead to the question whether the regularities must be mathematical rather than some other kind. According to your argument, the type of regularity prominent both in physics and in mathematics is the type of regularity congenial to human ways of thinking. You explicitly reject the view that mathematical order has a Platonic transmundane reality. Are mathematical regularities nonetheless objectively real in the physical world? Are these regularities independent of human cognition? Whichever way we answer, we would seem to be left with a further question. If we say that mathematical order is objectively real in nature, then the further question is why it is this kind of order rather than some non-mathematical type of regularity. At least we would need to understand why the order of nature is so thoroughly mathematical, with apparently no allowance for other kinds of order. On the other hand, if mathematical order is not inherent in nature, but is based on a human affinity for thinking in terms of symmetries, then we would confront two further questions. We would wonder why human beings happen to think this way, and we would wonder why this human thinking works so well in application to nature. So, the role of symmetries both in mathematics and in physics is important, but perhaps other explanatory factors are also needed.
Laurence Hitterdale