Hi Sylvia--
Your essay is superb! It is both creatively crafted and well argued. Moreover, I agree with both your main argument and your supporting elements. Of course, my admiration for your essay may thus be a product of mere "selection bias".
Speaking of selection bias, I whole-heartedly subscribe to your point-of-view that we are blind to "ubiquitous failures" when assessing the efficacy of mathematics. Before reading your essay today, I had a very polite back-and-forth with Cristi Stoica on this very subject regarding his essay. I made similar comments on Lee Smolin's threads. Amusingly, before settling on the essay that I posted, I had considered doing an essay for this contest that forthrightly addressed the many ways in which mathematics fails to efficaciously describe the physical world. I had tentatively entitled the piece, "On the unreasonable ineffectiveness of mathematics in the natural sciences". Given Section 2.3 of your essay, I'm glad that I moved in another direction.
The only area in which we seem to disagree is on the subject of the "unthinkable", especially with respect to randomness. For starters, I bristle at such phrases as "totally random" or "pure randomness". That's like saying that a man is "totally dead" or that a women has a "pure pregnancy". Something (an event) is either random or it is not. Statistical distributions, such as the Gaussian, are an entirely different kettle of fish (which, I think, was the point you were trying to make).
Furthermore, I do not agree that "unthinkable" worlds are so unthinkable. Here's one: A world of "white noise" in which all variables have an amplitude greater than your field-of-view. Sure, we can define "white noise" from the outside. But living it, on the inside, would be another matter. You'd probably be wiped out in the ensuing chaos before you could even voice the thought, "Wow, this world may be based on white ... argh!'. Here's another: Your "Daliesque" world, except one in which the "laws of nature" change randomly and drastically (and not as in, say, a Gaussian way with small-scale random effects) and do so at random times. There would be no meta-regularities. Here's a third: A world in which there were no discernable "events" or "objects"; there's just amorphous "stuff".
We are fortunate to live in a Universe that consistently displays regularities. This enables us to engage in reliable pattern recognition and, hence, algorithmic compression. Which allows us to do mathematics. Which then allows us to do mathematical physics. What a beautiful selection effect!
For reasons that escape me, your essay is terribly under-rated. I shall now try to adjust that.
Very best regards,
Bill.