"In quantum mechanics, time is absolute. The parameter occurring in the Schrödinger equation has been directly inherited from Newtonian mechanics and is not turned into an operator. In quantum field theory, time by itself is no longer absolute, but the four-dimensional spacetime is; it constitutes the fixed background structure on which the dynamical fields act. GR is of a very different nature. According to the Einstein equations (2), spacetime is dynamical, acting in a complicated manner with energy momentum of matter and with itself. The concepts of time (spacetime) in quantum theory and GR are thus drastically different and cannot both be fundamentally true."
So general relativity is doomed but why should quantum mechanics and spacetime coexist? Many Einsteinians suggest that spacetime, the "immediate consequence" of Einstein's 1905 false constant-speed-of-light postulate, should be abandoned too:
"Baumgarte began by discussing special relativity, which Einstein developed, 10 years earlier, in 1905, while he was employed as a patent officer in Bern, Switzerland. Special relativity is based on the observation that the speed of light is always the same, independently of who measures it, or how fast the source of the light is moving with respect to the observer. Einstein demonstrated that as an immediate consequence, space and time can no longer be independent, but should rather be considered a new joint entity called "spacetime."
What scientific idea is ready for retirement? Steve Giddings: "Spacetime. Physics has always been regarded as playing out on an underlying stage of space and time. Special relativity joined these into spacetime... (...) The apparent need to retire classical spacetime as a fundamental concept is profound..."
Nima Arkani-Hamed (06:11): "Almost all of us believe that space-time doesn't really exist, space-time is doomed and has to be replaced by some more primitive building blocks."
"Einstein introduced a new notion of time, more radical than even he at first realized. In fact, the view of time that Einstein adopted was first articulated by his onetime math teacher in a famous lecture delivered one century ago. That lecture, by the German mathematician Hermann Minkowski, established a new arena for the presentation of physics, a new vision of the nature of reality redefining the mathematics of existence. The lecture was titled Space and Time, and it introduced to the world the marriage of the two, now known as spacetime. It was a good marriage, but lately physicists passion for spacetime has begun to diminish. And some are starting to whisper about possible grounds for divorce. (...) Einstein's famous insistence that the velocity of light is a cosmic speed limit made sense, Minkowski saw, only if space and time were intertwined. (...) Physicists of the 21st century therefore face the task of finding the true reality obscured by the spacetime mirage. (...) Andreas Albrecht, a cosmologist at the University of California, Davis, has thought deeply about choosing clocks, leading him to some troubling realizations. (...) "It seems to me like it's a time in the development of physics," says Albrecht, "where it's time to look at how we think about space and time very differently."
Pentcho Valev