Dear Sir,
There is some confusion about Heisenberg's postulate. When Heisenberg proposed his conjecture in 1927, Earle Kennard independently derived a different formulation, which was later generalized by Howard Robertson as: σ(q)σ(p) ≥ h/4π. This inequality says that one cannot suppress quantum fluctuations of both position σ(q) and momentum σ(p) lower than a certain limit simultaneously. The fluctuation exists regardless of whether it is measured or not implying the existence of a universal field. The inequality does not say anything about what happens when a measurement is performed. Kennard's formulation is therefore totally different from Heisenberg's. However, because of the similarities in format and terminology of the two inequalities, most physicists have assumed that both formulations describe virtually the same phenomenon. Modern physicists actually use Kennard's formulation in everyday research but mistakenly call it Heisenberg's uncertainty principle. "Spontaneous" creation and annihilation of virtual particles in vacuum is possible only in Kennard's formulation and not in Heisenberg's formulation, as otherwise it would violate conservation laws. If it were violated experimentally, the whole of quantum mechanics would break down.
The uncertainty relation of Heisenberg was reformulated in terms of standard deviations, where the focus was exclusively on the indeterminacy of predictions, whereas the unavoidable disturbance in measurement process had been ignored. A correct formulation of the error-disturbance uncertainty relation, taking the perturbation into account, was essential for a deeper understanding of the uncertainty principle. In 2003 Masanao Ozawa developed the following formulation of the error and disturbance as well as fluctuations by directly measuring errors and disturbances in the observation of spin components: ε(q)η(p) + σ(q)η(p) + σ(p)ε(q) ≥ h/4π.
Ozawa's inequality suggests that suppression of fluctuations is not the only way to reduce error, but it can be achieved by allowing a system to have larger fluctuations. Nature Physics (2012) (doi:10.1038/nphys2194) describes a neutron-optical experiment that records the error of a spin-component measurement as well as the disturbance caused on another spin-component. The results confirm that both error and disturbance obey the new relation but violate the old one in a wide range of experimental parameters. Even when either the source of error or disturbance is held to nearly zero, the other remains finite. Our description of uncertainty follows this revised formulation.
Mathematics is related to the result of measurement. Measurement is a conscious process of comparison between two similar quantities, one of which is called the scaling constant (unit). The cognition part induces the action leading to comparison, the reaction of which is again cognized as information. There is a threshold limit for such cognition. Hence Nature is mathematical in some perceptible ways. This has been proved by the German physiologist Mr. Ernst Heinrich Weber, who measured human response to various physical stimuli. Carrying out experiments with lifting increasing weights, he devised the formula: ds = k (dW / W), where ds is the threshold increase in response (the smallest increase still discernible), dW the corresponding increase in weight, W the weight already present and k the proportionality constant. This has been developed as the Weber-Fechner law. This shows that the conscious response follows a somewhat logarithmic law. This has been successfully applied to a wide range of physiological responses.
Measurement is not the action of putting a scale to a rod, which is a mechanical action. Measurement is a conscious process of reaching an inference based on the action of comparison of something with an appropriate unit at "here-now". The readings of a particular aspect, which indicate a specific state of the object at a designated instant, (out of an infinite set of temporally evolving states), is frozen for use at other times and is known as the "result of measurement". The states relating to that aspect at all "other times", which cannot be measured; hence remain unknown, are clubbed together and are collectively referred to as the "superposition of states" (we call it adhyaasa). This concept has not only been misunderstood, but also unnecessarily glamorized and made incomprehensible in the "undead" Schrödinger's cat and other examples. The normal time evolution of the cat (its existential aspect) and the effect of its exposure to poisonous gas (the operational aspect) are two different unrelated aspects of its history. Yet these unrelated aspects have been coupled to bring in a state of coupled-superposition (we call it aadhyaasika taadaatmya), which is mathematically, physically and conceptually void.
Mathematics is related to accumulation and reduction of numbers. Since measurements are comparison between similar quantities, mathematics is possible only between similars (linear) or partly similars (non-linear) but never between the dissimilars. We cannot add or multiply 3 protons and 3 neutrons. They can be added only by taking their common property of mass to give mass number. These accumulation and reduction of numbers are expressed as the result of measurement after comparison with a scaling constant (standard unit) having similar characteristics (such as length compared with unit length, area with unit area, volume with unit volume, density with unit density, interval with unit interval, etc). The results of measurements are always pure numbers, i.e., scalar quantities, because the dimensions of the scaling constants are same for both the measuring device and the object being measured and measurement is only the operation of scaling up or down the unit for an appropriate number of times. Thus, mathematics explains only "how much" one quantity accumulates or reduces in an interaction involving similar or partly similar quantities and not "what", "why", "when", "where", or "with whom" about the objects involved in such interactions. These are the subject matters of physics. We will show repeatedly that in modern physics there is a mismatch and mix-up between the data, the mathematics and the physical theory.
Quantum physics implied that physical quantities usually have no values until they are observed. Therefore, the observer must be intrinsically involved in the physics being observed. This has been wrongly interpreted to mean that there might be no real world in the absence of an observer! When we measure a particular quantity, we come up with a specific value. This value is "known" only after the conscious or sentient content is added to the measurement. Thus, it is reasonable to believe that when we do not measure or perceive, we do not "know" the value - there is no operation of the conscious or sentient content is inert - and not that the quantity does not have any existential value. Here the failure of the physicists to find the correct "mathematics" to support their "theory" has been put forth as a pretext for denying reality. Mathematics is an expression of Nature, not its sole language. Though observer has a central role in Quantum theories, its true nature and mechanism has eluded the scientists. There cannot be an equation to describe the observer, the glory of the rising sun, the grandeur of the towering mountain, the numbing expanse of the night sky, the enchanting fragrance of the wild flower or the endearing smile on the lips of the beloved. It is not the same as any physical or chemical reaction or curvature of lips.
We thoroughly enjoyed your essay. It is as usual refreshing.
Regards,
basudeba