Hi Lachlan,
Thank you for your comment. In regard to Loschmidt's paradox, you ask in your essay "what breaks the time-reversibility of classical mechanics?" I agree that electromagnetic radiation is an important illustration of irreversibility. However, the mere asymmetry of electromagnetic propagation from a point source does not necessarily mean fundamental irreversibility.
The expansion of a gas into a vacuum is undeniably asymmetric in time, but most conceptual models of physics assume that it is reversible, in principle. If motions were reversed, expansion would reverse, and no laws of mechanics would be violated. It may be astronomically unlikely, and this breaks the symmetry of time, but whether it is fundamentally irreversible is a deeper question and one that is generally ignored.
Fundamental determinism and reversibility are deeply ingrained in conceptual models of physical reality, and it is rarely questioned. As I argue in my essay, however, fundamental determinism and reversibility are not empirically provable, and randomness and irreversibility are, in fact, compatible with observations and with the deterministic laws of physics. The reason is that determinism means a precise cause maps to a precise effect, but with fundamental randomness, there is no precise initial cause. Deterministic evolution of an initial cause or state with fundamental but empirically unresolvable randomness can be irreversibly amplified to macroscopically random outcomes.
Assuming fundamental determinism and reversibility requires extraordinary, and unnecessary, machinations to explain empirical irreversibility and the spontaneous organization of complexity within open systems (e.g. the origin and evolution of life). An absolute-zero ambient temperature is unobtainable, and the absence of fundamental thermal randomness assumed by most conceptual models of physics is an idealization that simply does not reflect physical reality.
Harrison Crecraft