[deleted]
Ray,
This problem is related in some ways to Perleman's proof of the homotopy equivlanece of homology spheres. I have been doing some background reading on this problem and am in many ways suspect this has some very deep mathematics to it. If you take a toy balloon and twist it up into various shapes it will smapp back into a spherical shape. I assume the surface is perfectly frictionless so that tying it up does not clamp it into shape. This Hamilton flow is such that it is always guaranteed to bring the space back to its minimal configuration. If you look at Perelman's paper you will see how he assigns entropy functionals to this! So a three sphere is guaranteed to evolved by the Ricc flow
dg_{ab}/dt = -2R_{ab} ...
This idea is carried over to higher dimensional spaces, and this evolution is conidered according to Turing machine logic. Look at the Novikov theorem quoted in Abhijnan's paper. So the logic is whether one can compute the minimal configuration of a space by Turing machine logic and assertain whether it is the same space as a known space in its minimal configuration. This is important for understanding all these strange Calabi-Yau spaces and whether one can compute them distinctly from each other.
The one thing which needs to be done is to carry this from homological theory to K-theory. K-theory is a much more powerful approach to topology, and it has connections to noncommutative geometry. So this is a vast domain which has many areas left unexplored. I am still patiently trying learn the foundations which Abhijnan quotes in this summary paper.
It is too bad this is not receiving a higher score than what it has garnered so far. This is one of the better papers in the whole lot submitted here.
Cheers LC