Dear Marius,
thank you for reading and appreciating my essay, and for the suggestions. I agree with you and I plan to arxiv them soon.
About semi-riemannian metric. When it is non-degenerate, it is the core of Relativity, both special and general. All the tests of Relativity also test the semi-riemannian metric. The special relativistic effects show that the Poincare symmetry is valid. The predictions of General Relativity, such as deflection of light, perihelion Advance of Mercury, etc, show that this metric exists but it is curved. One of the problems is the prediction of singularities: under general conditions GR saids that they exist. And these conditions are satisfied in our world - for example the existence of black holes. What the singularity theorems show is that at some extreme places, such as the "core" of a black hole, the metric becomes degenerate. In this case, the important invariants of semi-riemannian geometry become divergent.
So, I would say that I do not propose new hypotheses or laws of nature. I just modify the formalism, to base it on other invariants. For example, when the metric becomes degenerate in a way I named semi-regular, the curvature Rabcd becomes divergent, but its covariant version Rabcd remains smooth. Normally, they have the same information, but not when the metric is degenerate. In my approach, it turns out that the fundamental invariant is the covariant version of the Riemann tensor, which is smooth.
As an analogy, think at curves in plane. If we decide to characterize the way they turn by the curvature radius, the straight lines - having infinite curvature radius - will turn out to be singular. So, the best choice was to use the curvature, which is 1/R. In this case, the straight lines have curvature 0, which is more manageable. Basically, this is similar to what I did - I chose other fundamental invariants than it is customary. They contain the same information for non-degenerate metric, but they are not divergent, and continuous, when the metric becomes degenerate.
How can we test directly that the singular semi-riemannian metric occurs somewhere in the universe? It is hard, because the places where it is predicted are at the big bang, and inside the black holes. But maybe we can send some information in a black hole, and check that it survived the evaporation. I think that this is very difficult to do, perhaps impossible - we need to know completely the values of the fields, and to compute the outcome (the information survives, but it is mixed). Another way would be if micro black holes (predicted by Hawking) really exist. In this case, they should occur and evaporate quickly all the time, from quantum fluctuations. If they violate the conservation of information, then we can detect violations of unitarity and of the entanglement, by quantum experiments. Personally, I don't think that these experiments are practical. I just wanted to show that it is premature to reject General Relativity because it predicts singularities, by showing that these singularities are not "malign". I could not find a simple way to show this, so I had to develop some mathematics for the singular semi-riemannian manifolds.
Thank you for your observations, and good luck with the contest,
Cristi