[deleted]
Hi Alan
In Kaluza-Klein theories (KKT) the extra dimensions are shrunk into closed spaces, which for the case of electromagnetism basically gives the motion of light as being of the form of a spiral wave travelling along the surface of a closed tube. Such rotation around the closed dimension would give a visualisation of why a photon has spin in KKT.
The wave expansion about a particle-like compactified black hole given in my essay would physically correspond to the scenario of virtual-radiation about a particle creating a particle/anti-particle pair and then for the created anti-particle to annihilate the original particle. This gives a sort of alternation between a particle and the waves of its virtual-radiation field. The wave-particle duality comes from the time-scale of this alternation being as rapid as the Planck time, and so all interactions occur over the time scale of millions of such cycles. It is like drawing a particle and a wave on two pieces of card and then rapidly flicking between them, the net result is that you see both wave and particle at the same time. Whereas you can stop flicking the cards to see one of them at a time, the Planck time scale of the alternation means that there is no corresponding way of only seeing one at a time and so we see wave-particle duality.
This gives a scenario of an alternation between a particle with a virtual-radiation wave field, where the waves in KKT travel in a spiral fashion around a compactified tube. Accurate visualisations of higher dimensional scenarios are always slightly dubious, but you could argue that the average net effect seems to have elements of your visualisation.
Michael