Hi Michael,
Thanks again for your comments on my thread. They definitely helped my 2nd reading of your essay.
Like Joy I had noted your mention of S0, S1, S3, and S7 as the only normed division algebras, a point that Joy has repeatedly remarked on. This time I was particularly fascinated by your view of black holes as Kaluza-Klein 'particles' with empty S2 interior and 'real physical surface' as event horizon, and no singularity.
You indicate also that you derive values close to the Standard Model "despite being derived solely within classical physics." I plan to look at that reference. In the first page or so you remark there is no means in classical mechanics for a single particle to travel as a wave. Of course my model is based on the particle always traveling 'with' a wave. It is this linked state that you seem to view as a causal linkage leading to Bell-type non-locality issues. With inherently unknowable phase the abstraction 'causal' may be stronger than is actually the case, as there is also a self-interacting aspect of the C-field that may or may not allow physically real solutions to be derivable. In other words I am uncertain, according to your definition, whether to consider my wave property of the particle 'derivable' or not. [By the way, I tried to get your book Agent Physics on Amazon, with no success. Any ideas?]
Another point I did not fully appreciate the first time I read your essay is this: "Conservation laws applying to charges of particles mean that no real-number valued variables could be the cause of changes in particles numbers [with implications for incompleteness proof]." And this time through I did like your conserved charge as a limit to black hole self-immolation.
The following section on Non-physically-real terms is a tough nut to crack. I read and understood the words, but it doesn't jell. Partly because I believe particles derive from physical processes, not symmetry. Perhaps I'll understand this better after reading your reference [15]. I do agree with you about physics unification without quantum mechanics being fundamental.
In studying your 'twist' in S7, it does not sound the same as Joy's torsional twist. Is it? I did not interpret your change in metric in the ergo-region to be equivalent to Joy's change in handedness, but do you believe your solution is isomorphic to his?
I hope to have a few new questions after another reading or so.
Best,
Edwin Eugene Klingman