Inger,
Your question is not silly at all. It is very near the heart of the issue. One need only go a little bit deeper to arrive at "the issue."
What is the significance of the particles all being "identical" in the first place? If they remain, forever identical, then they cannot change with the passage of time. If they cannot change with the passage of time, then they cannot store any information whatsoever, within their internal structure.
But a larger entity, constructed from a number of such identical particles, can store information, by the relationships (like distances) between them. Entities that store information, can behavior towards other entities in a "symbolic" manner, and not just a "physical" manner. Even a tiny virus particle has genetic information stored within it, that enables it to exhibit such "symbolic" behavior.
What is the significant difference between "symbolic" and "physical" behavior? It is this: in the latter, observed data measurements are treated as "real numbers", in the former, they are treated like "serial numbers." Real numbers have most significant and least significant digits. Serial numbers, like credit-card numbers do not; change one digit anywhere, and it symbolizes someone else's account number; introduce one genetic mutation, and it may code for a different protein.
All the "interpretations" of mathematical models in physics have assumed that entities only interact "physically." That is true for entities devoid of any information storage capacity, like subatomic particles. But it is not true of macroscopic entities, especially human observers. Physical behaviors can be viewed as encoded into the equations. But symbolic behaviors are coded into the initial conditions. By ignoring the exact (individual digits) of the initial conditions of the information stored within complex entities, physicists has thrown the baby out with the bath-water.
All the supposed "weirdness" in the "interpretations" of quantum theory, derives from the fact that physicists have failed to take into account that human observers interact "symbolically" with their experiments, as well as "physically."