Matt
An interesting resume on number systems. Can you comment on the suggestion by Smolin, and Ken Wharton here, that after abstracting to numbers from reality to predict evolution of a system (nature), when renormalised of 'mapped' back to reality, we have no guarantee that similarities found mean there is any real physical relationship of the algorithms to the natural processes.
In other words, the maths used is 'unrealistically representative' of the renormalised mathematical model, but not necessarily also of reality itself. This then would be the reason for all the problems and anomalies.
Also, do you consider that conceptual ontology must be correct before abstraction is used? And might limiting abstraction to, perhaps, rational numbers and rigorously applying the rules and structures of logic to matters of 'process' or 'mechanisms', then allow more precise quantitative modelling?
I've explored the logic and ontology route, particularly regarding kinetics, and believe found some success. I'm not however competent to now evolve the mathematical structures to accompany it.
If you have the time I'd be grateful if you'd also read my essay and comment.
Thank you for yours, and very best of luck in the competition.
Peter