ARE BLACK HOLES REALLY SO WEIRD?
Black Holes have a certain aura about them. They are associated, in the minds of the general populace, with a certain mystique or ultra-mystery about them - terrifying objects that gobble up everything within range - the ultimate devourer, doomsday machine, berserker and weapon of mass destruction (if you could figure out how to manipulate one of course) all rolled into one. But Black Holes have other aspects about them that are equally fascinating, and not really all that weird, though some bits are weirder than others. But you don't have to be a geek to come to terms with these concepts.
The aura of the Black Hole, even if not quite as dramatic as a doomsday device, is hardly less within the astronomical community, to quantum physicists, or relativists (scientists who special in general and/or special relativity). Though there's little doubt today of their actual existence, a logical consequence of Einstein's theories of relativity, Einstein himself refused to give credence to them. The well-ordered universe just wouldn't actually create such monstrosities he believed. He wasn't alone in that point of view, and as their theoretical certainty became ever stronger, scientists tried to find ever more unique ways to prevent them from forming - to no avail.
But are Black Holes really as strange and mysterious and deserving of their aura and status as unique astronomical objects?
Black Holes may have no hair, which is to say they lack the individuality of whatever formed them so if you've 'seen' one Black Hole you've 'seen' them all. Translated, a Black Hole made out of rusted automobiles will 'look' the same as one made out of star-stuff, as one made out of pure gold, silver and diamonds. But Black Holes do have (or could have) certain properties. All Black Holes most certainly have mass and therefore gravity; they certainly have size (a volume, an area, a circumference, etc.); they certainly have a shape (spherical). Black Holes (against all intuitive prediction) have a temperature (Hawking radiation). They can have spin (rotation), and they may have an overall electric charge. So what's unique about that?
The property we most associate with Black Holes is gravity, a function of mass - the more mass, the more gravity. Associated with that concept is escape velocity - how fast do you need to go to escape an object's gravity well never to return.
Now our moon has gravity and an associated escape velocity. Planet Earth has greater gravity and therefore a higher escape velocity (about seven miles per second). Planet Jupiter has an even greater gravitational field and thus you need even more oomph to escape. Our sun is another notch higher up, and so it goes. Keeping in mind that gravity is related not to something's size, but to its mass, a White Dwarf star, while smaller than our sun, has greater gravity and therefore escape velocity. Then comes Neutron Stars (pulsars) and you really need some rocket power to get away from those babies!
However, there is a limit to velocity, escape or otherwise. That limit is the speed of light, or about 186,000 miles per second (roughly 300,000 kilometres/second). So what happens when there is so much mass, or so much gravity, that the escape velocity exceeds that of 186,000 miles per second? The quick answer is nothing - you can't escape; nothing can escape - not even light. That's pretty straight forward and you don't even need a course in relativity to figure it out! The absence of light is darkness, so any object that has an escape velocity greater than that of light will be dark - in other words, a Black Hole. The only difference twixt a Black Hole and any other macro object is that a Black Hole's escape velocity exceeds that of light. That's it; end of differences.
If you can't see a Black Hole, how could you know they actually (as opposed to theoretically) exist? Simple - Black Holes have gravity, and the gravity of Black Holes can influence matter we can see. So, if you see a star going too and fro in orbit around something you can't see, then that something is probably a Black Hole. Matter (interstellar dust and gas) spiralling into, but just prior to entering a Black Hole can also give off a tell-tale electromagnetic signature.
Because of such intense gravity, individuality is squeezed out. Planet Earth has highs (mountain peaks) and lows (ocean troughs) and a slight equatorial bulge, but if it's size were reduced (while retaining mass) to the extent that her gravity created a greater-than-light escape velocity, then Planet Earth would become a perfect sphere of super dense crushed matter. No peaks, no troughs, no bulge - no personality, or no hair!
Now objects tend to have a surface - an inside and an outside. In the case of Planet Earth, let's call beneath the crust Earth's inside; above the crust Earth's exterior. The same goes for Black Holes. The inside centre of a Black Hole is called a singularity. The 'surface' of a Black Hole is called the event horizon - it's the purely mathematical line where the escape velocity goes from faster than light speed (event horizon and below) to a permitted escape velocity (event horizon and above). Earth's usually quoted escape velocity is given to be at Earth's solid surface or sea level. But even sat 100 miles above, there's still as escape velocity, it's just less than 100 miles further down. In like style, a Black Hole's escape velocity decreases from the singularity outwards, but doesn't become permissible (less than light speed) until the altitude of the event horizon is reached. Thus one can not see anything, any events that are below this mathematical event horizon because anything below can't get out, including light. Finally, the distance between the singularity and the event horizon varies depending on the mass of the Black Hole.
It's what's below the event horizon that's really of interest given that it can't be seen; no information escapes to inform us or give us any real clues of the conditions beneath. One has to rely on physics' theoretical equations to predict conditions - conditions that really can't be verified by any direct observation.
Unfortunately, these equations, the equations of general relativity, break down when one approaches the singularity. That's because in order to come to terms with what a singularity is like, one has to merge general relativity (gravity) with quantum physics (because the singularity is thought to be of a size within the realm of quantum phenomena), or produce a theory of quantum gravity. Alas, that has yet to be accomplished. So, understanding the physics inside a Black Hole is one of Mother Nature's final frontiers!
For example, taken to their logical conclusions, physics' equations (general relativity) dictate that a singularity must have zero volume and infinite density. Physicists are well aware that whenever 'infinities' pop up in their musings, something's wrong and they need to go back to the drawing board (blackboard?) and refine things to a greater or lesser extent. Hopefully, a theory of quantum gravity will do that, but for the here and now, you'll find texts which state that a singularity has zero volume and infinite density. That's clearly a nonsense, for if one had infinity density, one must have infinite gravity as the greater the density an object has, the greater its gravitational attraction. Now even though gravity dilutes as it spreads throughout space and away from the object of its affection, any dilution of infinity is still infinity. Since Black Holes and associated singularities are thought to be common in the observable universe, there should be at least one that's had time since the Big Bang to project its gravitational influence onto us - say the massive Black Hole singularity at the centre of our Milky Way Galaxy, less than 50,000 light years away. Quite obviously we're not being subjected to an infinite gravitational attraction towards our galactic centre, which tends to put the kibosh on, and confirms the breakdown as to what the equations predict for a Black Hole's singularity.
So, if a Black Hole's singularity doesn't have zero volume and therefore infinite density, then it must clearly have a finite volume and a finite density which has implications for the origin of our Universe since conventional wisdom associates the Big Bang event with a singularity (and if there were to ever be a Big Crunch event, that would have to end up as a singularity).
The logic goes something like this. A singularity must have a finite density because having an infinite density is ridiculous. A singularity must have a finite volume because any object that has mass can't be dimensionless - that too would be ridiculous - and Black Holes certainly have mass since they have gravity. If the Black Hole continues to grow, then the singularity continues to add mass to it, and its density increases. But, eventually the density reaches some sort of maximum possible - it's finite after all and can't become infinite. So as matter continues to be added to the singularity, the volume or size of the singularity must grow - and grow - and grow - and grow. Eventually, the volume of the singularity must be such that it falls outside of the realm of quantum physics. Translated, in other words, not only is a singularity of greater than zero volume, it may not even be tiny. It could be massive - stellar sized; even galactic sized! That then does away with the absurdity that our entire universe started out as something less than atomic sized something akin to a tiny pinprick!
Now the other interesting thing is that gravity probably isn't really a force like electromagnetism or the strong and weak nuclear forces and shouldn't be lumped in with them (which physics texts do). Rather, gravity, according to general relativity, is rather a manifestation of space-time geometry. As the saying goes, 'matter (gravity) tells space-time how to bend; bent space-time tells matter how to move'. That movement we interpret as gravity.
So, space-time near, around or in a Black Hole is about as bent, or warped, as you can get, or conversely, the local geometry is so extreme or curved that not even light can get beyond the Black Hole's event horizon. The geometry creates a sort of well, so deep and so steep, that the velocity needed to escape is greater than special relativity allows. [Special relativity covers the speed of light; general relativity deals with gravity and space-time.]
What does the extreme warping of space-time mean - apart from making the Black Hole, black? Well, presumably if you distort space-time sufficiently, then you, in theory, can make short-cuts through space and/or time.
Let's have an analogy. Say you take a balloon and mark out a North and South Pole on the surface. The distance between the two is either half the circumference of the balloon (if you go via the surface or normal space), or the diameter (if you tunnel through, call that hyperspace). Now squeeze the balloon such that the North and South Poles are forced close together; maybe even touching. While this doesn't help reduce the travelling distance if you stay on the surface (normal space), the tunnelling (hyperspace) distance in the now warped balloon is vastly reduced. If it took you a year say to tunnel from North to South in the standard balloon, then post warping it might take you only a week (or less). In fact, if the Poles were squeezed into direct contact, then you could travel via normal space from one to the other instantaneously - no need for hyperspace. Of course if you actually wished to travel from some other point on the balloon's surface to some other point, the squeezing might not do you much good. In fact, the East - West distance has increased! So, the odds that the warping will be just right for your travel needs could be highly problematical. A local Black Hole warping that favours you travelling to Sirius quick smart is of little consequence if you wish to actually go to Alpha Centauri. But then as some old wise sage said, 'life wasn't meant to be easy'!
Now since space and time are intractably connected, points in time, like points in space, can be squeezed closer together. So the North and South Pole bits could easily have been a past and a future. Actually, because it's really space-time, you probably have a combination of both. You don't travel from 2000 AD Adelaide to 2000 AD Sydney in the wink of an eye; nor from 2000 AD Adelaide to 3000 AD Adelaide in that same wink, rather from (say) 2000 AD Adelaide to 3000 AD Sydney in an eye blink.
I've seen speculation that a Black Hole could warp space-time so greatly that it could 'pinch' itself off from our Universe and disappear entirely. Of course if it did so it could no longer have any influence within our cosmos. However, if something as massive as the Black Hole at the centre of our Milky Way Galaxy isn't enough to pinch space-time sufficiently to disappear, then perhaps it just doesn't happen - or maybe it takes the mass of an entire universe to do it. Say one universe's Big Crunch's mother of all Black Holes plus singularity warps space-time so much that it becomes another universe's Big Bang!
Now the common perception about Black Holes is that nothing gets out past the event horizon once it finds itself beneath it. That's not quite the case. In theory, as discovered by cosmologist/physicist Stephen Hawking, radiation can escape - sort of - and this radiation is now called Hawking radiation. Macro objects, objects we associate with classical physics, can not get from inside an event horizon to outside an event horizon without travelling faster than the speed of light, which unfortunately, should you find yourself below and event horizon, is the ultimate cosmic speed limit. There's no 'get out of jail' card. Travelling faster than light speed is not allowed.
But, any elementary particles, in the micro size realm and subject to quantum phenomena, can escape - again in theory; this hasn't be verified by direct observation (which is currently in the too hard basket). It you are a fundamental particle, just below the event horizon, you might, just might, due to quantum fluctuations or jitters / the vacuum energy / the Heisenberg Uncertainty Principle, quantum tunnel your way, the tiniest fraction of a distance imaginable, past the mathematical event horizon boundary, to outside and potential freedom. Of course most particles might get sucked right back in again, but a tiny fraction gets away, carrying with it energy (thus the Black Hole has a temperature) and therefore mass, so the Black Hole loses a bit of mass and shrinks a bit. This quantum tunnelling, crossing an energy barrier without having in theory sufficient energy to do so, is sort of like how a radioactive atom goes 'poof' and decays to a more stable state. Something in the nucleus, not having enough energy to break out, nevertheless quantum tunnels its way out - 'poof'.
Very much like a human being, from the very moment a Black Hole is born, say out of the gravitational collapse of a super-massive star that's run out of nuclear fuel and stellar puff, it will start to die, to evaporate via Hawking radiation. However, in a Universe still very much dominated by matter and energy (including the all pervasive cosmic microwave background radiation), way more stuff finds its way into a Black Hole than gets out - by many orders of magnitude. For every bit (particle) that escapes, millions of bits (particles) get trapped inside. But (and here I assume an ever expanding Universe that never results in a Big Crunch), what happens when all the available matter and energy (all those particle bits) has been consumed and Black Holes can't grow any more (and here I assume that individual Black Holes are so far apart and expanding away from each other that they don't consume each other). Then, evaporation - Hawking radiation output - exceeds input, and slowly, ever so slowly, and I do mean extremely slowly (as in measured over trillions of years), Black Holes get smaller and smaller until there's nothing left. But our now ever more vastly expanded and immensely larger than it currently is Universe is filled (albeit to a much rarefied extent) with just particles - particles adrift in the eternal cold of near absolute zero temperature (zero degrees Kelvin, the absolute theoretical minimum temperature possible).
However, the ultimate death of Black Holes has posed a significant problem to some physicists, causing quite a bit of controversy in the process.
What happens to the information content that a Black Hole can gobble up? Say you toss a book, or a CD, or a fully loaded human brain into a Black Hole. Is the information contained in that book (or whatever) lost to the Universe forever? [Perhaps given the state of information overload we suffer from that might be a blessing!]
You can not have macro stuff spew out of a Black Hole without violating basic physics. Macro stuff, say in the form of a book or a CD or a human, stuff full of information, falls in - that identical macro stuff, stuff full of information, does not, can not, come back out again. It is not only an improbable event, but an impossible one and a violation of the law of physics. But we have seen that in theory at least, Hawking radiation can get back out, because radiation isn't macro, its micro, or in the realm of the quantum.
Note that it wasn't Hawking radiation that was tossed into the Black Hole in the first place, but a book or CD or a human being or a whatever macro object, so escaping Hawking radiation isn't that book or that CD or that whatever, but a bit of this and a bit of that and there's no way of distinguishing the this from the that. Though there is apparently no way to reassemble the bits into all its separate meaningful messages; one-on-one, all the bits are nevertheless there.
If you were somehow able to reassemble bits of Hawking radiation emitted from all the bits and pieces which the Black Hole swallowed - which can escape - into a meaningful message(s), how would you know that message was something part and parcel of some information that went down the Black Hole gurgler in the first place? You're more likely to have assembled one letter from one book, another letter from another book, yet a third letter from a third book, etc. The information (say sentence) you have assembled never entered the Black Hole in that form at all!
Still, a Black Hole, in theory, eventually spews out all the information it absorbed over its existence, ultimately via Hawking radiation. Some scientists insist there is, there must be, a way to reassemble the bits into all its separate meaningful messages; one-on-one.
So therein lies the controversy - macro stuff does go in; macro stuff does come out. Macro stuff ultimately escapes as micro stuff - Hawking radiation. Some scientists will say you can't in theory reassemble and separate out the signal from the noise; others say you can, in fact it must be possible.
As indicated above, some physicists make a big deal over the loss of information via a Black Hole relative to any other way - probably because of the non-reversibility factor already described. Methinks personally it's a non-event. Why? The fundamental question this all boils down to be that information - in any form - is a composite of elementary particles. A book, or a CD, or Morse code ink drops, or a human brain is a composite of particles. An electron, all on its own, isn't telling you very much (for that matter, either is any individual letter in a book - by itself). Loss of information seems to be another example of dust-to-dust, ashes-to-ashes; only it's a more fundamental case of elementary particles to elementary particles. It's how the Universe began and its how the Universe will end up if the current observational astronomical trends continue into the indefinite future.
There's one other solution to the 'is information lost forever or is it not' paradox. It's considered a possibility that a Black Hole, because is so distorts time and space - in the extreme - ultimately buds off from our Universe and starts or enters another universe, or a baby universe (part of a Multiverse). In such a case, any information is budded off with it and lost to our Universe forever. Of course our loss is the other universe's gain; maybe a Black Hole(s) in some other universe has dumped its information load (or overload) onto our Universe!
There's one further spin-off from the Black Holes make baby universes idea. In a Multiverse, different universes may have different laws of physics. There's no reason why the laws of physics in our Universe need be identical in another universe. Thus, there might be some universes where the local physics favour the formation of Black Holes, and some universes where local physics can't make Black Holes. Those universes that can easily make Black Holes will 'breed' and produce baby universes. Those universes that can't readily make Black Holes will 'breed' less. Those universes that can't produce Black Holes will be sterile. Do you see the connection with Darwinian ideas? Some universes are more 'fit' to reproduce than others!
Now that's weird! There's one other bit of weirdness I like about Black Holes, and that is that what's inside them may well be a new form of matter. Ordinary matter goes into a Black Hole, but the conditions inside them are so extreme that there's some sort of phase transition (like when ice goes to water goes to steam or vice-versa) and while it's still matter, it's matter but not as we know it. The theoretical evidence for that idea is that if you have a matter star, and an antimatter star, and you introduce them to each other, what you get is one almighty Ka-Boom! But, if your matter star compresses into a Black Hole, and your antimatter star compresses into a Black Hole, and you combine the two, what you get is just a larger Black Hole!
Some more weirdness: It's suggested that information going into a Black Hole is actually 'stored' in the event horizon, that two dimensional 'surface' marking the point of no return that surrounds the Black Hole's singularity - whatever that actually is. The event horizon concept isn't difficult to envision - Earth's crust and oceans are a two dimensional surface surrounding the spherical three dimensional planet.
Now as more and more stuff enters a Black Hole, the event horizon expands accordingly - obviously - just like our crust (area) would get bigger if Earth's volume increased. The event horizon is also the area where Hawking radiation is emitted from.
Now say you are inside a Black Hole's event horizon - that's the wrong side to be on, but this is just a thought experiment and I'll assume you haven't been crushed into a tiny pinprick of stuff, stuff that could equally be rusted automobiles or stuff formally made from gold, silver and diamonds. There's lots of trapped radiation (photons) in there with you because light can enter a Black Hole. Those photons can struggle up, losing energy with each unit of distance gained, to reach the event horizon, but no farther. Their energy has exhausted itself. I gather they can just barely touch and 'reflect' off the underside of the event horizon and come back down again (in a direction towards the singularity), picking up the energy again that they expended in their futile gesture of escape. So, you, being also beneath the event horizon can see the event horizon from the inside via these trapped photons. You can also see beyond the event horizon via new photons entering the Black Hole from outside the event horizon - photons that will join their trapped or prisoner kin. It's like a half-way mirror. If you are inside a Black Hole, you can see out, because light can pass through the Black Hole's event horizon to you, but people on the good side or outside of the event horizon can't see you because light reflecting off you can't make it past that event horizon barrier.
One further question, could we actually be living within a Black Hole, or translated, is our Universe actually a Black Hole? Now one could (and people have) suggested that one could consider the entire Universe as being the inside of a Black Hole - after all, nothing can escape from the Universe. Well, if you can't escape from inside a Black Hole, and assuming there's no escape from our Universe (you are trapped in this Universe, like it or lump it), then a rose by any other name...
However, our Universe doesn't exactly mirror a real Black Hole unless there is an outside to our Universe - a beyond the boundary or horizon that allows stuff to get into our Universe, our Universe ultimately trapping it.
So, Black Holes residing inside a Black Hole Universe, which maybe residing inside...
Russian dolls within Russian dolls within Russian dolls within Russian dolls.
Saving the best for last, could you become a Black Hole? Well, the short answer is presumably, 'yes'. The reasoning goes as follows. If you travel at ever increasing velocities, under special relativity, your mass gets correspondingly greater and greater, and your length gets shorter and shorter. Translated, your density gets greater and greater; your own gravity gets higher and higher. At light speed (impossible to achieve), your mass would be infinite; your volume zero; your density and gravity infinite. Well, that's not on. But, before even approaching that limit, your mass would be theoretically great enough; your volume low enough, your density and gravity great enough, that you'd warp space-time sufficiently enough to turn into a Black Hole! As noted above, what actually comprises a Black Hole is irrelevant. Any stuff will do - gold, silver and diamonds; rusted automobiles; or flesh-and-blood (i.e. - you).
Here are a few further recommended readings:
Begelman, Mitchell & Rees, Martin; Gravity's Fatal Attraction: Black Holes in the Universe; [2nd Edition]; Cambridge University Press, Cambridge; 2010:
Susskind, Leonard; The Black Hole War: My Battle With Stephen Hawking to Make the World Safe for Quantum Mechanics; Back Bay Books, New York; 2008:
Thorne, Kip S.; Black Holes & Time Warps: Einstein's Outrageous Legacy; W.W. Norton & Company, New York; 1994: