Dear Akinbo Ojo,
I do appreciate your kind remarks, and thank you for reading my paper. I'm very happy you intend to return to make more comments.
I'm sure you understand that I claim John Bell significantly oversimplified the problem, leading to an erroneous conclusion. But even his oversimplification is complex! To go a level deeper, as I have done, makes the issue even more complex. (Actually, I think it simplifies the physics, but in the context of his theorem it requires both the new level of physics plus Bell's model and requires bringing in the Dirac fundamental helicity eigenvalue equation plus the Pauli provisional precession eigenvalue equation plus new arguments and the new Energy-Exchange theorem and local conservation of energy. Thus Bell supporters can either validly miss the point or can obfuscate by ignoring the points.)
As I have noted, Bell's models do not work. Bell could easily have simply stated that "my model fails to produce either the quantum mechanical or the experimental measurements" and it would not have been a big deal. Instead Bell claims that no one's local model can possibly work (a pretty big assumption, if you ask me) and then claims that local reality, one of our most basic intuitions of the universe, is wrong. That is a big deal.
Because Bell formulates this as a simple mathematical model and because his mathematics is essentially correct (his physics is wrong) those who work through his mathematical model conclude that no local model could escape his logic. The fact is that Bell imposes unwarranted constraints as the first equation in his theorem and this guarantees that no local model can beat his theorem. The only question is, are his constraints justified? I argue that they are not.
As I do not assume that you have read all of the above comments, I will repeat a few points. First, Bell (and/or his defenders) make (at least) two false equivalencies:
1.) The assumption that the Dirac equation and the Pauli equation are essentially equivalent.
2.) The assumption that the Stern-Gerlach and the Aspect experiments are essentially equivalent.
The first I have dealt with in detail in my essay and in the ~20 page paper Spin: Newton, Maxwell, Einstein, Dirac, Bell, so I won't repeat the arguments here. The second I have not yet written up in detail, so I will mention it here.
It is an error to assume that Stern-Gerlach and Aspect experiments are equivalent due to two facts. The first and obvious fact is the quite different physical nature of the entities being tested. The fact that quantum mechanical kets look similar, or that simplistic models are plane waves obscures this but does not erase the essential difference between charged spinor fermions and uncharged bosons, and no one who is serious can claim that these physical entities are equivalent.
But even more significant, from the Bell's theorem perspective, is the essentially different measurement techniques involved. Despite many comments above, Stern-Gerlach, whether measuring silver atoms or neutrons, produces a distribution of deflections. It is a scattering experiment, whose outputs are position measurements. Aspect-type experiments count photons, and the output is a count. In the deflection measurements, the initial spin (lambda) is indirectly exhibited, and clearly exists. In the counts, the photon-equivalent of the initial orientation is subsumed, and is not evident as it is in Stern-Gerlach. This is one reason I have focused on SG experiments.
On page 84, in Bell's "Speakable..." Bell states "let A be a variable which takes the values +1 or -1 according to whether counter one does or does not register. [and same for B...]" This, whether it is currently realized by Bell defenders or not, is significantly different from his claim on page 15 that "the result A of measuring sigma_dot_a ... [is +1 or -1 ]." One is a deflection, the other is a count. One exhibits the 'hidden variable' in the value of a deflection, the other subsumes it in a count. To expand on this as it deserves would take another essay. The point is, it is overly simplistic to equate these two types of experiments as almost all Bell defenders do. Such a claim is based on either ignorance of the physics, ignorance of the nature of the measurements, or both.
As Nick mentioned above, this battle has often been fought on the grounds of "loopholes", and Caroline Thompson, as I recall, focused on loopholes, forgive me if I'm wrong on this. That argument, I believe, is essentially that the measurements are wrong, and loophole free measurements would agree with local models. That is significantly different from my argument which is that Bell imposed erroneous constraints on local models and that is the reason his local models do not work. I have presented a local model, the physics underlying the local model, a computer experiment based on the local model, and the results of the local model, which agree with experiments and with quantum mechanics. Loopholes play no part in my argument and are simply a distraction. Bell's oversimplified physics is the essence of my argument and I present physics that, as Einstein demanded is "as simple as possible, but not simpler."
Akinbo, yours is a very relevant comment, and to address all your points in one response would require a longer comment, so I'll stop here, and address your other points in another comment(s).
I hope to address two types of readers in this forum - one type is the Perimeter-type, like Pusey and Leifer, "the big boys" in the field who have entered FQXi contests in the past and who contribute to FQXi. I hope for the sake of the FQXi community they respond. You represent the other type - informed, brilliant, interested non-physicists - so I hope you will return with more comments. The effort to move me down in the rankings is, I believe, to decrease the visibility of my essay and my arguments and I consider that a good sign.
My very best regards,
Edwin Eugene Klingman