Dear Akinbo,
You mention above that I have "carefully prepared the parcels in the so-called 'singlet state' or binary as Tim prefers." As the singlet states are 2-D representations, but include the imaginary i, and Pauli matrices are 2 x 2 matrices, also including i, the operations of the 2 x 2 matrix on the 2-D states can be mapped into a 3 x 3 real rotation matrix operating on a real 3-D vector. Just another way in which quantum mechanics obscures or hides the 3-D nature of spin. (Nothing nefarious implied, just the way things are.)
As you note Tim (@ 03:49 0n 4 Feb above) states
"Send a neutron through a Stern-Gerlach apparatus and report the outcome as either "spin up" meaning "neutron recorded above the midline" or "spin down" meaning "outcome recorded below the midline". The outcome space is now binary and Bell's result applies. This is what is meant everywhere by "doing a spin measurement on a neutron" and it is what is understood by saying "a spin measurement on a spin ½ particle is always either spin-up or spin-down"."
He then goes on to state: "The actual results cluster in a small group well above the midline and a small group well below, and for the purposes of reporting the result the former count as "spin up" and the latter as "spin down". This describes the outcome of every such experiment ever done..."
This appears not to be the case, based on "an actual experimental record of neutron impact positions on the screen." As we non-members are not allowed to post graphics (probably a good rule) I will post the neutron data in such manner than anyone can plot it:
Position, counts
60, 48
50, 130
40, 182
30, 298
20, 364
10, 350
0, 436
-10, 381
-20, 338
-30, 311
-40, 154
-50, 102
-60, 39
Tim Maudlin, in a series of comments above, flatly states that Stern-Gerlach, with neutrons, is a binary measurement, with "actual results cluster in a small group well above the midline and a small group well below..." and further states, "This describes the outcome of every such experiment ever done..." Does this appear to be the case to anyone else? Plot it and see.
Regards,
Edwin Eugene Klingman