Dear Victor,
I enjoyed your first sentence and fully endorse your second above. Your third and fourth are very gracious. I'm not sure what exactly confounds you about "all light propagates in local gravity", so I'll try to restate it.
The statement "all light propagates in local gravity" is factually correct. Light deflects and diffracts, as seen during eclipses, in the local gravity of the sun. Light participating in the Michelson-Morley experiment propagated in local gravitational field of the earth, the dominant local source, so the static experiment, located in the MM-laboratory, was in the true local rest frame with v = 0 origin and c = speed of light. Any moving object in this 'rest'-frame will effectively see c v . If we identify the local gravity field as the 'ether', the medium of propagation for light, then we predict the null result of the MM-experiment. And when applied to Einstein's railway gedanken experiments, the station becomes the rest frame, and the rail-cars are moving in the rest frame. All light moving in the local gravity propagates with speed c, independently of the speed of earth thru space, etc.. The axiom that the speed of light is relative to each moving rail-car is incorrect. Steven Andresen, in the following comment, says the same thing:
"Yes, gravity as Ether. Gravitational fields act as preferred reference frame. And to be preferred reference frame is a battle won by the larger dominant local mass. A car submits to the Earths preferred frame. The Earth submits to the suns preferred frame. Unless you are very very close to the car, or close to the Earth. Nearby Photons submit to the Earths Gravitation field as a preferred reference frame, they can be thought of in terms as being trained by Earths gravity, giving mmx results."
Your response on your page contained, "I have not yet found time to digest your essay." I'm glad you persevered. As for charged particles, the mass and charge differ from light, but the Lorentz transform applies to the relativistic (kinetic) energy in Euclidean space. After getting the particles to the collision point, the physics of interest occurs in only one time dimension, the time of collision.
You also say:
"My challenge to you is to write a description of space - gravitation without the bloody Einstein field equations. Help me out. Where is the simple calculation for the correction factor to keep the clock on a geostationary satellite synchronized with my watch?"
I can write a description of space without the bloody Einstein field equations, although it can be shown to be essentially equivalent to those equations. And I wanted to treat the GPS timing, but "9 pages!" Tom Phipp's explanation of GPS clarified things for me [my reference 9]. He made one major mistake concerning the Hertzian equations, based on his understanding of QM, but I have corrected that in my essay.
Best regards,
Edwin Eugene Klingman