• [deleted]

Dear Edwin,

You've got me on the ropes with your probing questions. But I think I can answer the question: where are the gravity waves?

Let's contemplate a one dimensional space-time with gravitational potential energy V(x,t) = V_0 cos (kx-wt). Actually, it's a longitudinal wave. Between any two points in space-time, there are an infinite set of these waves (or at least a lot of them). We don't see the waves because there are plenty of terms in the series to cancel out oscillations/deviations in potential energy.

I can't discern any more detail tonight other than to say that time dilation is built into these waves. In effect, when a large quantity of mass-energy builds up somewhere on the one-dimensional space-time, potential energy is pushed negative.

Let me think this over.

  • [deleted]

Tom,

I do not know if you got further than the opening quote of my essay. Further on I discuss time. It has always been the problem child. To overcome the grandfather and twins paradox and to have causality and understand the arrow of time at the foundational level(or Object reality) everything that currently exists, (which is not the same as everything that can be seen in space time), must exist -at the same singular time-. That is unitemporal time. Objects are not distributed in time at this foundational level only in space. There is no spread across time, no space-time fabric.

However there is still passage of time becuse everything is chnaging spatial position, that is energy or change. The change in sequence of Object universal spatial position allows earlier and later to be considered, which means the change is not now just spatial but change in time. It is not the same thing as the time dimension although both are called time. The temporal distribution comes in when transmission of data such as EM has to be incorporated into the received or image reality.So space time is emergent. This relates to Newton's absolute time and space which you referred to here.

So it is not true that a universe imagined without time dimension is static. It is actually the space-time universe without the uni-temporal foundation that is static and unchanging. To reconcile a quantum probability type model with space time, time has to be understood and put into the model correctly. Passage of time emergent from spatial change in a uni-temporal foundational reality and the time dimension is emergent from transmission delay of data from which the observed and experienced higher level image reality universe is fabricated.

The whole of space-time itself is a reality interface product, an observer effect if you like. The whole universe is an image of reality not the currently existing Object universe. No reality interface, organic or organic no space-time. This is where decoherence of the mathematical superposition of eigenstates comes in. At detection the unique data that allows formation of the image reality is selected.Only when the image reality is formed is it real.

Any field observed in space time has thus to be a temporally distorted version of a foundation unobserved field. It is not what is seen that is real because that is merely a representation derived from the data. Really real is the foundational reality and its topology is spatially distributed only and should not directly fit with the distorted space-time.

Without both the foundational reality and the space-time reality the model is incomplete and that leads to the unanswered questions, mysteriousness and paradox. Only by sorting out the understanding of time, as described, can the two models be united and non realism be overcome. Real donkeys need realism or they would starve due to the mathematicians magic of incomplete information. Also see Julian Barbour's essay in this contest.

"Men Who stare at goats" film 2009 directed by Grant Heslov."Invisibility? Yeah. That was level 3"--"Like ...actual invisibility" -"Well, yeah that was the goal. Eventually, we adapted it to just finding a way of not being seen. But when you understand the linkage between observation and reality, ...then you dance with invisibility."

Ray,

You say that: "The paradox is that particles (discrete CDT-like kissing-spheres) can behave like waves (continuous string theory), and waves can behave like particles."

If you look again at the figure for the electron and the photon on page 6 in my essay, you will see that the particle is a real particle, and it is always accompanied by a C-field circulation that, in motion, is a circularly polarized wave. No paradox at all.

Edwin Eugene Klingman

  • [deleted]

Dear Edwin,

At this time I don't know the mathematical description of the gravity waves that are suspected to cause gravity to exist. However, I do stick to my guns that they are quasi-existent wave-functions.

Consider any and every physical object in the universe; anything from a space-ship to a car, a person, dog, flee, etc... It is a fact that whatever object you can think of, that objects lies within space-time, and it is subject to the gravity at that location. Now, the gravity in and around that object is some gravitational potential energy. How is that gravitational potential energy determined? That gravitational potential energy is a form of information, and information travels at the speed of light from all points in space. Gravity information comes to us from nearby mountains, the earth, the sun, other planets, nearby stars, etc. Nobody can argue that this information cannot arrive at whatever physical object you've considered.

We would probably agree that gravity does not manifest strings, wires cables or ropes that maintain a continuous physical connection to you, I and every physical object. Yet the gravitational potential energy seems to find you and I very reliably. I would argue that every object is interconnected with gravitational wave-functions which transmit gravitational potential energy from where ever they came from.

In the case of a shift photon generator, I am suggesting that the simple act of broadcasting gravitational potential energy back into all of the gravitational interconnections, that this will change the intensity of the gravitational potential energy along these wavefunctions.

In another thread Steve Dufourny said:

I have thought about your C field, I think it's interesting and relevant, but I ask me if this field is only for biology?

I ask me also if the evolution and the Newtonian encoding, were there are steps to find it,are the main piece of this field of consciousness???

In fact , do you see this field as a linearity as light and with different frequencies for the polarity with mass.....or do you think it's possible to insert that in the blue gene or jaguar or the last ibm???

That implies some simple conclusions about the artificial intelligence and the number of spheres encoded....compared with a biological mass evolved also.....

At my humble opinion, there is a big big difference dear Edwin No,???

Now if the biology is inserted in the semi conductors, It's intriguing indeed,

Steve

Dear Steve,

As I understand it, you are asking why the C-field, if interpreted as the 'bearer' of awareness and volition 'properties' (i.e., consciousness) would only apply to biology and not semiconductor technology.

In principle, there is no reason, but in practice there are reasons. The simplest is the dependence of field interactions with mass: del cross C ~ p where momentum p is mass times velocity. In biology most of the 'moving parts' are either ions in axons, or proteins, or vesicles. These typically weigh from billions to trillions of times the electron mass, and therefore the local field is that much more 'aware' of them. Thus a C-field effect on a charged electron is essentially below any realistic noise level, whereas at the biological structure level the C-field may be at the nano-volt or higher levels of effect, small, but operative over the period of biological evolution to guide processes in a way that sheer statistics would be very unlikely to provide. And the field may also supply the 'will to survive' that otherwise makes no sense for chemicals in a world of 'dead material'. This is very important.

In addition, these biological particles have extremely complex structures that provide much more than binary logic. And the interconnections of neural networks are in the trillions, whereas the interconnections of semiconductor computers are very regular and sparse and two dimensional. And these neurons behave not only as digital logical but also as an analog computer, vastly increasing the 'compute power'. Also the brain is tightly coupled, through the hypothalamus to the endocrine system, bringing hormones into the picture. Although I have taken two course in immunology, and studied three excellent texts, I find the immune system difficult to comprehend without something like the C-field.

So you are right Steve, that in principle, the C-field may contribute to Artificial Intelligence (or 'real' intelligence) but in practice it does not seem to me to be feasible for the above and other reasons.

Thanks for your lucid questions and the kind way that your started off the questions on the other thread.

Your friend,

Edwin Eugene Klingman

    Dear Edwin,

    I'd like to say hello and let you know how much I have appreciated reading your comments to other essays. It is always interesting to read your pleasant but insightful encouragement and analysis.

    On the first scan of your essay I didn't recognize what you meant by the C field. Now that I come back to it and read it again I am startled by your initial description of "one primordial field." You describe a tangent vector which would make a lot of sense in order for a single field to propel motion that is observed in physics. One extremely nice feature is it would provide an explanation for the laws of thermodynamics without going beyond what can be measured. Of course there would be some reason behind a C field and you suggest possibilities, but I wonder if this could represent the limit of what physics can measure for now anyway.

    I wanted to ask about the units in your equations. It seems the equations use more of a system of ideas without specific units, which would be fine. If the math does have specific units I would want to ask more specifically about them in order to follow some of the relations.

    Your approach of not taking other theories for granted is admirable and I think you could go even farther. Your analysis of entanglement seems right on. In your comment about not accepting higher dimensions than four, I'm curious if you also could question the concept of space-time by using the C field. Specifically, page 2 describing time is very interesting and I wonder if your description indicates time is something other than a dimension?

    I'd like to ask many more questions and hopefully will have a chance later.

    Kind Regards, Russell Jurgensen

      Dear Russell Jurgensen,

      Thank you for your very kind remarks, and thank you for studying my essay.

      The C-field is the 'circulational' aspect of the gravitational field in an analogous way to the magnetic field being the circulational aspect of the electric field. Maxwell conjectured that by replacing charge by mass and E-field by G-field that all of Maxwell's equations for electro-magnetic fields would have similar equations for the 'gravito-magnetic' fields. Maxwell first pointed out that fields have energy. What he did not understand, being 50 years before Einstein's E=mc^2, is that fields therefore have equivalent mass, and therefore the gravito-magnetic fields (G and C) will interact with themselves, which is what Yang and Mills described in 1954. This self-interaction leads to properties that the electro-magnetic fields (which act on charge, but are themselves uncharged) do not have.

      Today it is known that the C-field exists, but the strength of the field is at question. Everyone, for reasons of symmetry, I think, assumed that the C-field has roughly the same strength as gravity, but Tajmar has measured 31 orders of magnitude stronger. That matches my calculations based on what I considered reasonable assumptions.

      I do drop terms and constants when I am trying to emphasize a point. I mean this to simplify the presentation, but it has confused a few people. The primary equation for the C-field is equation 8 in my essay. The G-field has units L/T^2 (accel) and the C-field has units 1/T (Hz). All constants are shown, c is the speed of light with units (L/T) and kappa is a dimensionless constant that I derive elsewhere. It is where the 10^31 shows up. All terms in this equation end up with units (L/T^3) so the factor mu that scales the momentum p=mv must have the units to force this dimension. Therefore mu must have a mass, and the question is 'what mass'? If mu is based on local mass density, things get very interesting.

      I only recently became aware of Nottale's 'scale invariance = motion invariance' and so, as you point out, on page 2 there is essentially no 'motion' until the perfect radial symmetry breaks. This replaces 'motionless' radial symmetry with local vortex motions that provide the first 'clocks' or clock-function in this universe. The question of what 'time' means before this is rather fuzzy.

      I have also been re-evaluating my ideas about time due to the earlier fqxi 'time' contest and many fqxi discussions. I am currently leaning toward a 'motion'-based understanding of time, but I would hate to have to define it exactly at this moment. It's a work in progress.

      I would be very happy to try to clarify any further questions you might have.

      Thanks again, and good luck in the contest.

      Edwin Eugene Klingman

      • [deleted]

      Edwin,

      Your essay's goal is intriguing. Perhaps you can help me understand a few things from the first couple pages.

      1. You justify master eq.1 by saying that, if there is only a field, then an operator acting on the field can only be construed as the field acting on itself. It's not clear, though, how the operator comes to exist, or why eq. 1 is the only possibility. Thus, eq. 1 seems to be positing a law or axiom above and beyond the field itself rather than deriving something from the field alone.

      2. You say that math and integers are generated from the field. But it seems that math is implicitly assumed already in the meaning of the field itself, and the master equation in particular. How, for example, would one define a directional derivative of the field without math?

      Regards,

      Tom

        Dear Thomas McFarlane,

        The derivation of an 'operator equation' is based simply on the fact that physics tends to be written in terms of such equations. So, if we start with the goal of defining a 'physics' on a one and only substance, with no 'laws of nature' existing in some Platonic dimension, then the only possible operator equation must be that any 'operation on the substance' must be equivalent to 'the substance interacting with itself', since nothing else exists. But this is formal; both operation and substance are undefined at this point.

        Then, since we cannot do physics without physical facts, I pull in two facts: Maxwell's energy of field proportional to square of field, and Einstein's energy-mass equivalence. These 'suggest' that the phi*phi term on the right is energy, hence mass, and this 'suggests' that the operator del is the directional derivative, so I explore those suggestions.

        Possibly other suggestions could have lead to other areas of exploration. For example, the formal equation, before the terms are defined, may have 'suggested' to me a General Relativistic equation and I may then have explored the consequences of such. It's easier to derive results using the approach I took, but that does not necessarily preclude a 'tensor operator' interpretation.

        The issue of math is trickier. I am saying that, unlike some theories that assume a 'mathematical universe' or 'God making the integers', if we can only get 'particles' out of our field, then these particles can be used to construct 'counters' [as shown in reference 3] and, per Kroneckar, 'man can do the rest'. So, since I show how to get 'particles' out of the field, and have shown elsewhere how to build counters from these particles, and men have done the rest, I feel free to use math. It may sound circular, but what I am aiming for is to have math arise from our field, and not have to assume some Platonic world of math outside of our original primordial field.

        I hope this makes sense to you.

        Those were good questions. Thank you for studying my essay. I would be happy to attempt to answer more questions, if you have them.

        Good luck in the contest.

        Edwin Eugene Klingman

        Edwin,

        Thanks for your response to the questions. That helps clarify your ideas.

        Good luck to you as well!

        Regards,

        Tom

        A relevant comment on the above from Thomas McFarlane's thread:

        My essay in the previous fqxi contest was Fundamental Physics of Consciousness wherein I propose that the essence of one reality is 'awareness and volition' [=consciousness].

        To interact with itself, a distributed field must somehow 'be aware of' itself, and any 'action' can imply 'volition'. We can of course ignore these aspects of reality and simply formulate 'potentials' and 'forces', but that doesn't change the facts of what happens, it just symbolizes it.

        From this perspective 'volition' is 'free will' and the implication is that consciousness has been here 'from the beginning'. Since over half a century of experiencing and thinking about awareness has convinced me that it could never arise locally from simply arranging the Lego blocks in the 'proper' order, this is compatible with my theory.

        I mention this because you seem to want to break the world into 'Order' and 'Chaos', where chaos implies random to me. I prefer the concept of free will, and distinguish free will from random as follows:

        free will = action by reason of awareness,

        random = action for no reason at all.

        This may or may not fit into your scheme of thinking, but it works well for me.

        Edwin Eugene Klingman

        • [deleted]

        From my perspective: Randomness is nothing. If it can be identified as action, then it is not randomness. The reason I say this is that action requires reason in order to be described. My point is that there is no action in the universe that is random. Randomness is a hiding place for lack of knowledge. That is what I think. I apologize to Dr. Klingman for interjecting my non-professional opinion; however, he is invited to reason it away. I am interested in learning. I learn every day, usually too late to remove my remarks, but, not too late to learn.

        James

          James,

          Classical physics is based on deterministic equations, at least when initial and boundary conditions can be specified. Statistical physics is based on the initial conditions not being available to us. Quantum physics is based on deterministic equations whose solution is interpreted as a probability amplitude, introducing an element of uncertainty.

          I believe that the major question is whether we live in a deterministic universe in which the big universal clock is wound up, and reality is the predetermined winding down of the clock; no surprises; nothing unexpected [if we had access to all of the initial conditions]. Most of physics seems to at least tacitly support this model.

          I don't believe it to be the case, so the question is 'where do surprises come from?'. In this case there seem to be two choices, random or free will.

          Random, in the sense it is normally used involves action [I believe]. Whether this is Darwinian action that simply cannot be predicted because of complexity or whether it more basic is not often specified. In this sense random has some connection to 'noise' which has some connection to 'unknown' as a practical matter, which may or may not be compatible with a predetermined reality. This seems to be compatible with your view that "Randomness is a hiding place for lack of knowledge." That's the general meaning of 'noise'.

          Your view, that "action requires reason in order to be described" is the correct view from my perspective, because I believe that awareness and volition are the source of 'surprising actions', and not 'random' actions. And I believe that the "reason" involved is essentially "by reason of awareness", and this in my mind includes 'creativity'.

          My view does not argue against the reality of 'noise' as a practical matter.

          Thanks for your input. I hope the above makes sense and is compatible with your framework of understanding.

          Edwin Eugene Klingman

          I posted the following on another thread, in response to the statement: "...the most successful theory of all time, as measured by how closely it matches experiment, is QED."

          Over 60 years of QED calculations of the anomalous magnetic moment of the electron [up to 12,000 Feynman diagrams involved in the latest such calculation] have produced the eight [or so] place accuracy of QED. But, after this calculation is made, I believe the fine structure constant [upon which it is based] is adjusted, based on the results of the latest calculation of the anomaly. This should lead, over 6 decades, to a very accurate 'correlation' between these two.

          Also, as of 1998, the vacuum energy, which is central to QED, was found to be overestimated by QED by 120 orders of magnitude. It would seem that this would call for 50 years of QED calculations to be redone, but I don't believe that this has happened. Why not?

          Just a year or so ago, protons were assumed to have a significant contribution from the virtual 'sea of strange quarks', but this has not turned out to be the case. I don't know whether to blame QED or QCD, but it would seem to be related to vacuum energy.

          What bother's me is that 'virtual particles' seem to be the best imaginable 'fudge factor' because the particles aren't measured but simply provide the means to 'fit' calculations to reality.

          Finally, the recent recent QED calculations of the proton radius based on the experimental data from 'muonic hydrogen' is off by 4 percent. Since this is the simplest possible system one would expect better of QED. Does this mean that QED now has one place accuracy? [Which would put it in the same realm as QCD.]

          I have generally been unable to get answers to these [and related] questions, and I welcome any experts who could help me understand what's going on.

          Edwin Eugene Klingman

          • [deleted]

          Dear Sir,

          We have watched your comments at various threads. Here is our comment below the Essay of Ms. Georgina Parry. We thought you may be interested in this because we have discussed some issues relating to unification of forces.

          You discuss observed Image reality and unobserved Image reality. By this we understand directly perceptible and indirectly perceptible or inferred. You have rightly clubbed them into one group. We call this group existence.

          You say: "Where and when an image appears to exist is dependent upon the observer reference frame and is not intrinsic to the object itself." We agree and only add that the external environment introduces an element of uncertainty due to its effect on perception by the observer. We have discussed this aspect elaborately in our essay. From this we infer that uncertainty is not a law of Nature. It is a result of natural laws relating to observation that reveal a kind of granularity at certain levels of existence that is related to causality.

          You say: "The description of reality is affected by the methods of investigation used, the pre-existing concepts applied and mathematical modeling employed." Unless the perception (results of measurement) is described in communicable language, (or self realized) it does not make any sense. Hence, we call these as describability.

          You say: "If a description requires acceptance of paradox, unreality of all things, quasi reality or supernatural agents or realms, yet is a description that fits with observation, it must be incomplete if not incorrect or non science". This shows that there is a limit on our ability to "know". Hence, we call these as knowability. We combine these aspects and define reality that satisfies these criteria.

          You say: "The mathematical space-time model is a construct giving a mathematical representation that fits well with observations of Image reality but is not a complete model of reality." We have shown in our essay that Nature is mathematical only in specified ways. Regarding space, time, space-time and arrow of time, we have discussed briefly in our essay and in our comments under the threads of Mr. Biermans, Mr. Castel, etc. We have written a book in which we have discussed on this subject in detail.

          We agree that: "Image reality is a means of amalgamating information that arrives together, rather than that which was generated together." But we do not agree with your description that it does not require a conscious observer. In fact we call the agency that amalgamates the information as the conscious observer. You say that this information can be amalgamated by a mechanical detector. But then the resultant information is in a superposition of all possible states, because the so-called wave function collapse can occur only after it is measured (perceived) by a conscious observer. Thus, ultimately, we have to admit the conscious observer.

          You say: "The data contained in the image is not from contemporaneous origin so the image is not temporally homogeneous." We agree and have discussed it at various places. The data (result of measurement) is the description of the state at a designated instant. We do not agree that "present is a composite formed from data, experienced simultaneously". We posit that all systems are dynamical systems. Present is a designated instant in analog time that depicts the temporally evolved state of a dynamical system at that designated instant. Thus, we cannot agree that: "The Image reality becomes a manifestation when the simulation is formed from the available data. It does not exist prior to that process." It certainly existed prior to that process, though in a different state. Further this proves the existence of the conscious observer. Otherwise, your statement that it will "...becomes a manifestation" becomes meaningless.

          When you differentiate between "current time" and "Uni-temporal, or Objective, Now", you are leaving out the definition of time from the above description. Both space and time are related to sequence. Time is the ordering of the interval between events just like space is the ordering of the interval between objects. Both are indirectly perceptible through events and objects only. We take a segment of this interval, which is fairly repetitive and easily intelligible, and call it the unit. We compare this unit with the interval between objects and events and call these as space and time. Since space and time are indirectly perceptible, they are described through alternative symbolism by describing the objects or events associated with these. We can choose a segment from any or all event sequences without interfering with the laws of physics. When we restrict our description to a single sequence, it is "current time". When we widen our choice to encompass the whole universe, we call it simultaneity or "Uni-temporal, or Objective, Now".

          You say: "Change or potential for change can be regarded as energy." What you are describing here is the effect of energy, which you are confusing with energy proper, which is the cause. We agree that "Energy is never destroyed. So change is continual and inevitable." But what is energy? We hold the homogeneous primordial field as the back ground structure of creation. By a mechanism which we are not discussing here, instability in the medium leads to a chain of events giving rise to "time", as we know it. This created inertia of motion, which was opposed by the inertia of restoration (elasticity) of the medium. This interaction, according to the same mechanism led to the density variation. This also leads to local confinement, which became the particles. Generation of particles led to further density variation. The inertia of restoration then pushed the particles around, which is seen as the effect of energy on those particles. This effect is experienced at two levels: proximity or intra-particle and distance or inter-particle. Depending upon the proximity-proximity, proximity-distance, distance-proximity and distance-distance variables, the effects are experienced as strong nuclear, weak nuclear, electromagnetic and radioactive disintegration forces. Gravity is a composite force that stabilizes: the orbits of planets and stars and the orbital of atoms. Since stabilization depends on density distribution, gravity is related to mass. Since density of intervals between objects is relatively less, in a closed system like Earth-Moon or Sun-planets, the density of the medium appears homogeneous. Hence, gravity is related to distance. The inter-relationship appears as the gravitational constant. Thus, you are right that: "Energy is never destroyed. So change is continual and inevitable."

          Your description of air traffic control hints at a few fundamental principle. If you accept space as the ordering of the interval between objects, then position becomes a function of (or relative to) the ordering you choose. But this description can be meaningful only between the two objects that are joined by the interval. Thus, they belong to a specific frame of reference. If we want to relate their relationship with that of another object, then the other object must be within the same frame of reference or the frame of reference (interval) must be enlarged to bring the other object within it. This is what Einstein describes in his 30-06-1905 paper "On the Electrodynamics of Moving Bodies":

          1. If the clock at B synchronizes with the clock at A, the clock at A synchronizes with the clock at B.

          2. If the clock at A synchronizes with the clock at B and also with the clock at C, the clocks at B and C also synchronize with each other.

          Here clock at C is the privileged frame of reference. Yet, he tells the opposite by denying any privileged frame of reference. Further, his description of the length measurement is faulty. Here we quote from his paper and offer our views.

          Einstein: Let there be given a stationary rigid rod; and let its length be l as measured by a measuring-rod which is also stationary. We now imagine the axis of the rod lying along the axis of x of the stationary system of co-ordinates, and that a uniform motion of parallel translation with velocity v along the axis of x in the direction of increasing x is then imparted to the rod. We now inquire as to the length of the moving rod, and imagine its length to be ascertained by the following two operations:-

          (a) The observer moves together with the given measuring-rod and the rod to be measured, and measures the length of the rod directly by superposing the measuring-rod, in just the same way as if all three were at rest.

          (b) By means of stationary clocks set up in the stationary system and synchronizing in accordance with ยง1, the observer ascertains at what points of the stationary system the two ends of the rod to be measured are located at a definite time. The distance between these two points, measured by the measuring-rod already employed, which in this case is at rest, is also a length which may be designated "the length of the rod".

          In accordance with the principle of relativity the length to be discovered by the operation (a) - we will call it the length of the rod in the moving system - must be equal to the length l of the stationary rod.

          The length to be discovered by the operation (b) we will call "the length of the (moving) rod in the stationary system". This we shall determine on the basis of our two principles, and we shall find that it differs from l.

          Our comments: The method described at (b) is impossible to measure by the principles described by Einstein himself. Elsewhere he has described two frames: one fixed and one moving along it. First the length of the moving rod is measured in the stationary system against the backdrop of the fixed frame and then the length is measured at a different epoch in a similar way in units of velocity of light. We can do this only in two ways, out of which one is the same as (a). Alternatively, we take a photograph of the rod against the backdrop of the fixed frame and then measure its length in units of velocity of light or any other unit. But the picture will not give a correct reading due to two reasons:

          โ€ข If the length of the rod is small or velocity is small, then length contraction will not be perceptible according to the formula given by Einstein.

          โ€ข If the length of the rod is big or velocity is comparable to that of light, then light from different points of the rod will take different times to reach the camera and the picture we get will be distorted due to the Doppler shift of different points of the rod. Thus, there is only one way of measuring the length of the rod as in (a).

          Here we are reminded of an anecdote related to Sir Arthur Eddington. Once he directed two of his students to measure the wave-length of light precisely. Both students returned with different results - one resembling the accepted value and the other different. Upon enquiry, the student replied that he had also come up with the same result as the other, but since everything including the Earth and the scale on it is moving, he applied length contraction to the scale treating Betelgeuse as a reference point. This changed the result. Eddington told him to follow the operation as at (a) above and recalculate the wave-length of light again without any reference to Betelgeuse. After sometime, both the students returned to tell that the wave-length of light is infinite. To a surprised Eddington they explained that since the scale is moving with light, its length would shrink to zero. Hence it will require an infinite number of scales to measure the wave-length of light.

          Some scientists try to overcome this difficulty by pointing out that length contraction occurs only in the direction of travel. If we hold the rod in a transverse direction to the direction of travel, then there will be no length contraction for the rod. But we fail to understand how the length can be measured by holding it in a transverse direction to the direction of travel. If the light path is also transverse to the direction of motion, then the terms c+v and c-v vanish from the equation making the entire theory redundant. If the observer moves together with the given measuring-rod and the rod to be measured, and measures the length of the rod directly by superposing the measuring-rod while moving with it, he will not find any difference what-so-ever. Thus, the views of Einstein are contrary to observation. Regarding the other points raised in your essay, we have discussed many in our essay. We will be happy to offer further clarification.

          Regards,

          basudeba.

          basudeba,

          As I believe I have remarked to you, I have become aware recently of how many people seem to find problems with special relativity, and, I noted that often, "where there is smoke, there is fire." I have derived a formula for 'time dilation' from my Master equation, and I have begun to look at 'relativistic mass' as a manifestation of the C-field equation (#8 in my essay), but I have not given much thought to 'length contraction'. Thank you for your comments.

          Edwin Eugene Klingman

          James,

          Not only do I appreciate your asking me to clarify my comments and ideas, but I have been noticing your other posts around this contest, and I admire the clarity you attempt to bring to each thread. Keep up the good work! I know that you have admired my work, but this should never cause you to hesitate in asking a question or pointing out what you see as a problem.

          Your friend,

          Edwin Eugene Klingman

          • [deleted]

          Edwin,

          Wonderful essay!! (Trying to get caught up reading others since mine posted four days ago.)

          With regard to your interest in the local vs. nonlocal issue: I attempt to hypothesize in my essay, if there would be any measurable difference between expected interference patterns for Copenhagen Interpretation vs. a De Broglie-Bohm type model in the double slit experiment. For instance, Bohm described the "wave" as an active Schrodinger type wave and the electron would be attracted to the parts of the wave that would ultimately correspond with areas of measurement on the detector wall. To me this means that the electron could begin its journey anywhere on the leading edge of the wave front, but might have to shift or jump positions if it is headed for destructive interference (since we know the electron won't dissapear).

          Since the electron would have to jump in that model and not in the Copenhagen model - I propose that the final expected distributions for the interference pattern may possibly be different. In the end, each simulation may turn out to be identical, but if someone someday were willing to do the painstaking work, a discrepancy might turn up that would allow us to accept or reject the role of the wave as being more of a "pilot" as opposed to representing the electron itself.

          Any thoughts?

          Chris

            Edwin,

            Thanks for your thoughtful response. I see now from your note and looking at the essay once more that the gravitational field is the primordial field. At first I was thinking your ideas were very close to my own but now I see they are fairly different. The similarities must come because we are all looking at the same features in nature with different approaches.

            Thanks also for describing the units. I see how the math is used to emphasize the points.

            Overall a very interesting essay to make me think and ponder.

            Kind Regards, Russell Jurgensen